
Understanding the Reproducibility of Crowd-reported
Security Vulnerabilities

Dongliang Mu12, Alejandro Cuevas2, Limin Yang3, Hang Hu3,
Xinyu Xing2, Bing Mao1, Gang Wang3

1. Nanjing University
2. Pennsylvania State University
3. Virginia Tech

Real World Effects of Security Vulnerabilities

CVE-2017-0144
WannaCry

CVE-2010-2772
STUXnet

CVE-2014-0160
HeartBleed

CVE-2014-6271
ShellShock

2

It is infeasible for in-house teams to identify all possible vulnerabilities before a software release

Released
Publicly

Vulnerability Reporting WebsitesThe Crowd

Massive Crowd-reported Vulnerabilities Over Time

Vulnerability
Reporting

White-hat
Hacker

Normal User

Security
Analysts

…
…

3

Security
Researchers

CVE1 Website
1 Common Vulnerabilities and Exposures

Released
Publicly

Vulnerability Reporting WebsitesThe Crowd

Massive Crowd-reported Vulnerabilities Over Time

Vulnerability
Reporting

White-hat
Hacker

Normal User

Security
Analysts

…
…

4

Security
Researchers

CVE1 Website
1 Common Vulnerabilities and Exposures

1999 2015 2016 2017201420132012201120102009200820072006200520042003200220012000

Number	of	vulnerabilities	reported	to	CVE1by	year

Vulnerability Reproduction Can Be Challenging

5

Vulnerability Reproduction Can Be Challenging

6

Poor reproducibility prevents analysts from assessing
potential threats to their customers in a timely fashion

Consequences of Poor Reproducibility

7

Poor reproducibility makes it hard to thoroughly evaluate
security solutions

Poor reproducibility delays the patching of vulnerability
Software vendors

Security Firms

Security Researchers

Poor reproducibility prevents analysts from assessing
potential threats to their customers in a timely fashion

Consequences of Poor Reproducibility

8

Poor reproducibility makes it hard to thoroughly evaluate
security solutions

Poor reproducibility delays the patching of vulnerability
Software vendors

Security Firms

Security Researchers

Research Papers that use public vulnerabilities for evaluation # of Vulnerability
SP’2018 9

Usenix’2017 8
Usenix’2015 6
NDSS’2015 7

Usenix’2015 8
NDSS’2011 14

SP’2008 5
Usenix’2005 4
Usenix’1998 8

This Work
Q1: How reproducible are public security vulnerability reports?

Q2: What makes vulnerability reproduction difficult?

Q3: How to improve the efficiency of vulnerability reproduction?

9

We answer three questions by manually reproducing vulnerabilities

Roadmap
• Methodology
• Findings
• Survey
• Suggestions
• Conclusion

10

We surveyed 48 external security professionals from both
academia and industry to examine people’s perceptions
towards the vulnerability reports and their usability

Vulnerability Report Dataset
• We randomly selected a large collection of reported vulnerabilities
• We focused on Memory Error Vulnerabilities due to their high severity (Average CVSS

Score 7.6 > Overall Average CVSS Score 6.2) and significant real-world impact
• We focused on Open Source Linux Software due to debugging and diagnosing

capabilities

• We collected two datasets including,
• A primary dataset of 291 vulnerabilities with CVE IDs
• A complementary dataset for 77 vulnerabilities without CVE ID

11

CVSS Score Rating
0.1 - 3.9 Low
4.0 - 6.9 Medium
7.0 - 8.9 High
9.0 - 10.0 Critical

We collect vulnerability reports by crawling the references listed in the CVE website.
v 6044 vulnerability reports in total

Vulnerability Report Dataset (cont.)

12

CVE-2008-5314 The crowd-sourced vulnerability reports

Information
source websites

We collect vulnerability reports by crawling the references listed in the CVE website.
v 6044 vulnerability reports in total

Vulnerability Report Dataset (cont.)

13

CVE-2008-5314 The crowd-sourced vulnerability reports

Information
source websites

Top 5 source websites in our dataset

The Analyst Team
• We formed a team of 5 security analysts to carry out our experiments

14

Security Analysts

First-hand experience analyzing vulnerabilities, writing
exploits, and developing patches

In-depth knowledge of memory error vulnerabilities

Rich Catch-The-Flag experience, and have discovered and
reported over 20 new vulnerabilities to CVE website

Reproduction Workflow

15

• Vulnerable Version
• Operating System
• Software Installation
• Software Configuration
• Proof-of-Concept File
• Trigger Method
• Vulnerability Verification

Security Analysts

Set up
Environment

Install & Config
Software

Trigger
Vulnerability

Verify
Vulnerability

Read
Reports

Default Setting for missing information

Reproduction Workflow (cont.)

16

• Set up the operating system for vulnerable software analysis

Information Default Setting

Operating System A Linux system that was released in (or slightly before) the
year when the vulnerability was reported

• Vulnerable Version
• Operating System
• Software Installation
• Software Configuration
• Proof-of-Concept File
• Trigger Method
• Vulnerability Verification

Set up
Environment

Install & Config
Software

Read
Reports

Trigger
Vulnerability

Verify
Vulnerability

Reproduction Workflow (cont.)

17

• Compile vulnerable software with the compilation options
• Install vulnerable software with the configuration options

Building System Default Setting

automake make; make install

autoconf & automake ./configure; make; make install

cmake mkdir build; cd build; cmake ../; make; make install

• Vulnerable Version
• Operating System
• Software Installation
• Software Configuration
• Proof-of-Concept File
• Trigger Method
• Vulnerability Verification

Set up
Environment

Install & Config
Software

Read
Reports

Trigger
Vulnerability

Verify
Vulnerability

Reproduction Workflow (cont.)

18

• Trigger the vulnerability by using the Proof-of-Concept File

Type of PoC Default Setting

Shell commands Run the commands with the default shell
Script program (e.g., python) Run the script with the appropriate interpreter
C/C++ code Compile code with default options and run it
A long string Directly input the string to the vulnerable program
A malformed file (e.g., jpeg) Input the file to the vulnerable program

• Vulnerable Version
• Operating System
• Software Installation
• Software Configuration
• Proof-of-Concept File
• Trigger Method
• Vulnerability Verification

Set up
Environment

Install & Config
Software

Read
Reports

Trigger
Vulnerability

Verify
Vulnerability

Reproduction Workflow (cont.)

19

• Verify the vulnerability with expected program behavior

Information Default Setting

Vulnerability Verification Unexpected program termination (or program “crash”)

• Vulnerable Version
• Operating System
• Software Installation
• Software Configuration
• Proof-of-Concept File
• Trigger Method
• Vulnerability Verification

Set up
Environment

Install & Config
Software

Read
Reports

Trigger
Vulnerability

Verify
Vulnerability

Reproduction Experiment: Controlled Information Source

20

SecurityFocus
Exploit DataBase

Redhat Bugzilla
SecurityTracker

One of Top 5 Source Websites
Manual Debugging

Failure

Success

Single-source Combined-top5 Combined-all

SecurityFocus

Exploit DataBase

Redhat Bugzilla

OpenWall

SecurityTrackerOpenWall

SecurityFocus

Exploit DataBase

Redhat Bugzilla

OpenWall

SecurityTracker

……

Roadmap
• Methodology
• Findings
• Suggestions
• Conclusion

21

Finding 1: Vulnerability Is Difficult to Reproduce
Information Source CVE Reproduction (N=291)

of Case # of Success Success Rate (%)

SecurityFocus 256 32 12.6%
Redhat Bugzilla 195 19 9.7%
ExploitDB 156 46 29.5%
OpenWall 153 67 43.8%
SecurityTracker 89 4 4.5%

Combined-top5 287 126 43.9%

Combined-all 291 182 62.5%

22

Information Source Non-CVE Reproduction (N=77)

Combined-all 77 20 (25.6%) 25.6%

The single-source returns a
low success rate

“Combined-top5” has clearly
improved the success rate
The success rate is improved
to 62.5% by “Combined-all”

Some ad-hoc techniques based on experience

Debugging the software and PoC files

Inspecting and modifying the source code

Testing the cases in multiple OS and versions

Searching related hints from the Internet

Finding 2: Key Factors Make Reproduction Difficult

23

202
151

15

Reproduction State After Manual Debugging

Success	in	Combined-all

Reproduced	by	Manual	Debugging

Failure	after	Manual	Effort

Intensive manual debugging takes another 2,000
man-hours to finish, about 13 hours for each case

Report Information # of vulnerabilities addressed
by Manual Debugging

Trigger Method 74

Software Installation 43

PoC File 38

Software Configuration 6

OS information 4

Software version 1

Vulnerability Verification 0

Finding 3: Useful Tips for Information Recovery

For 74 cases that failed on trigger method, we recovered 68 cases by reading other similar vulnerability reports

24

Correlation of Different
Vulnerabilities

Recover missing information by reading reports of other
similar vulnerabilities.

Priority of Information

1. Trigger method
2. Software Installation
3. PoC File
4. Software Configuration
5. Operating System

Roadmap
• Methodology
• Findings
• Suggestions
• Conclusion

25

Our Ideas of Making Vulnerability Reproduction Easier

26

Standardize Vulnerability Reports

Develop Useful Automated Tools to
Collection Information

Automate the Vulnerability
Reproduction

Vulnerability
Reporters

Reporting
Websites Reproducers

CVE-2007-1001 misses Trigger Method
CVE-2013-7226 misses Installation Options
CVE-2007-1465 misses Proof-of-Concept
……

Manually generating standardized reports is
really time-consuming

With standardized reports, it’s a waste of
resource if we still reproduce vulnerability
entirely by manual efforts

Conclusion

27

Vulnerability reproduction is difficult and requires extensive manual efforts

A crowdsourcing approach could increase the reproducibility

Apart from manual debugging based on experience, Internet-scale crowdsourcing
and some heuristics could help recover missing information

There is an urgent need to automate vulnerability reproduction and overhaul
current vulnerability reporting systems

Data Sharing
• DataSet : https://vulnreproduction.github.io/ (12 Virtual Machine Images)
• Github Repo : https://github.com/VulnReproduction/LinuxFlaw

• We provide 300+ Reproducible Vulnerabilities in above Repo
• For each vulnerability, we have :
• Fully-tested Proof-of-Concept
• Pre-configured virtual machine or Docker Image
• Detailed instructions on how to reproduce the vulnerability
• Structured information fields (in HTML and JSON)

28

Name: Dongliang Mu
Homepage: http://mudongliang.me/about/
Email: dzm77@ist.psu.edu

References

29

Research Papers that use public vulnerabilities for evaluation # of Vulnerability
Usenix’2005 Non-control-data attacks are realistic threats 4
SP’2008 Preventing memory error exploits with wit 5
Usenix’2015 Control-flow bending: on the effectiveness of control-flow integrity 6
NDSS’2015 Preventing Use-after-free with Dangling Pointers Nullification 7
Usenix’1998 StackGuard : automatic adaptive detection and prevention of buffer-overflow attacks 8
Usenix’2017 Towards efficient heap overflow discovery 8
Usenix’2015 Automatic Generation of Data-Oriented Exploits 8
SP’2018 Data-oriented programming : On the Expressiveness of Non-Control Data Attacks 9
NDSS’2011 AEG: Automatic exploit generation 14

