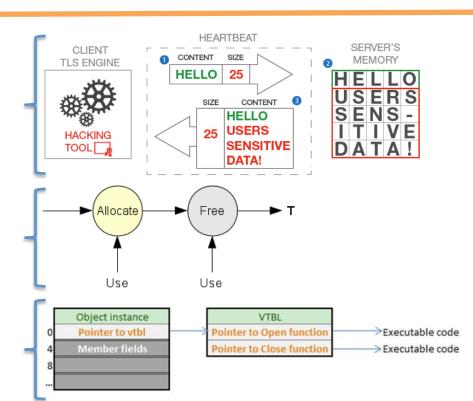
GUARDER: A Tunable Secure Allocator

Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin*, Tongping Liu

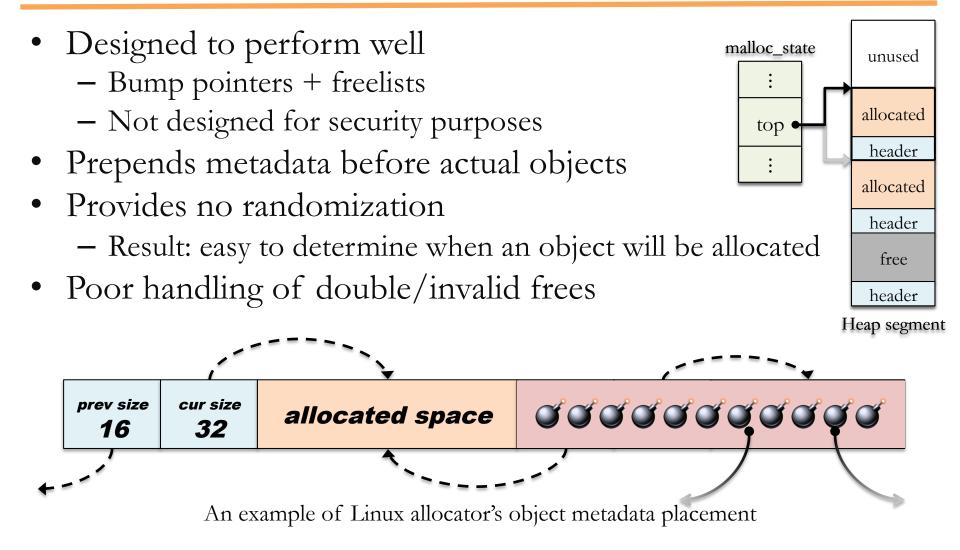

University of Texas at San Antonio * The Ohio State University

Common Heap Vulnerabilities

- Buffer over-read
 Information leakage
 - e.g., Heartbleed
- Use-after-free
- Buffer overflow
- Double / invalid free

Unexpected results, program crash, hijacked control flow

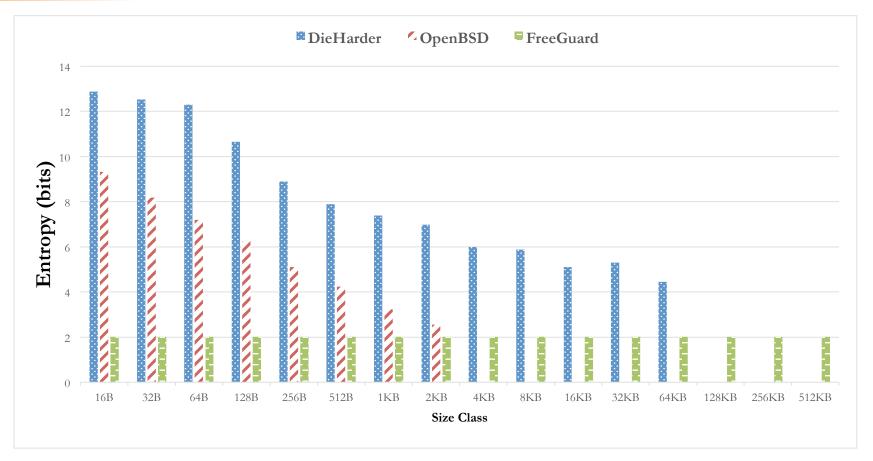
Heap Vulnerabilities Reported in NIST Database


Heap Vulnerabilities	Occurrences (#)
Heap Over-reads	125
Heap Over-writes	673
Use-after-frees	264
Invalid-frees	35
Double-frees	33

Many vulnerabilities were reported just in the past year!

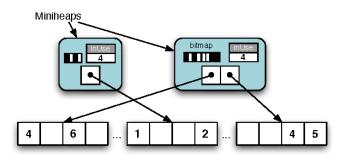
Defending Heap Vulnerabilities

- Detect bugs with automated tools, e.g. Coverity, ASan
 - Overhead issue, completeness, false positives
- Rewrite code using a safer language, e.g. Java – Huge amount of effort and performance issue
- Prevent code execution
 - Cannot handle return-to-libc or ROP attack
- Sanity check on execution flow, e.g. CFI
- Secure heap allocator, e.g. randomization


Default Linux Allocator

Existing Secure Allocators: OpenBSD, DieHarder, and FreeGuard

- Each are BIBOP-style secure allocators
 - "Big Bag of Pages"
 - Each "bag" of pages holds objects of a specific size class
 - Metadata are separated from the actual heap
- All feature randomization
 - DieHarder = $\log n$ bits of entropy
 - OpenBSD = $2 \sim 10$ bits
 - FreeGuard = 2 bits
- Some impose high performance overhead
 - OpenBSD $\approx 31\%$
 - DieHarder \approx 74%, up to 9.2X


Entropy of Existing Secure Allocators

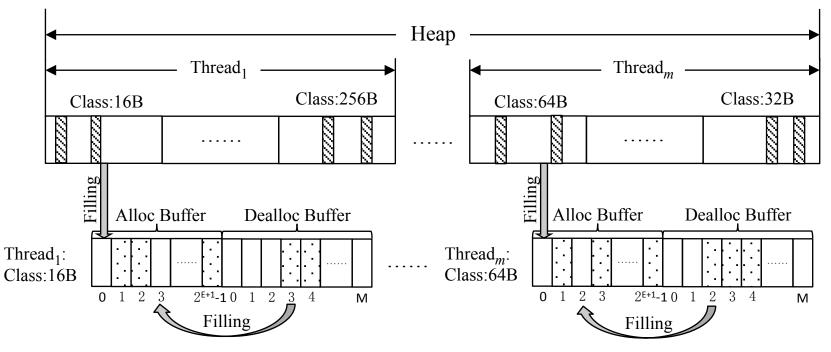
- 1. Exhibit either low or unstable entropy
- 2. Unstable entropy dependent on size class, execution phase, inputs, and applications

DieHarder's Security Issue

- Always selects one object randomly, among all available objects
 - May take extended period before search is successful
 - Not reliable \rightarrow unstable entropy
- Worse: security is bound to its specific design, which is not flexible

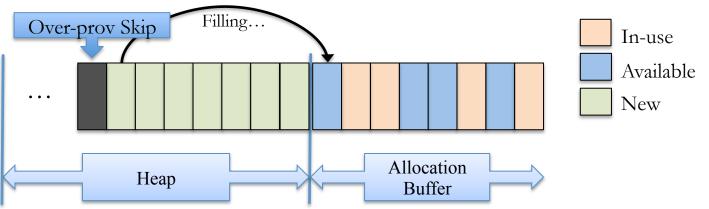
Allocation space (randomly placed pages)

Design Purpose

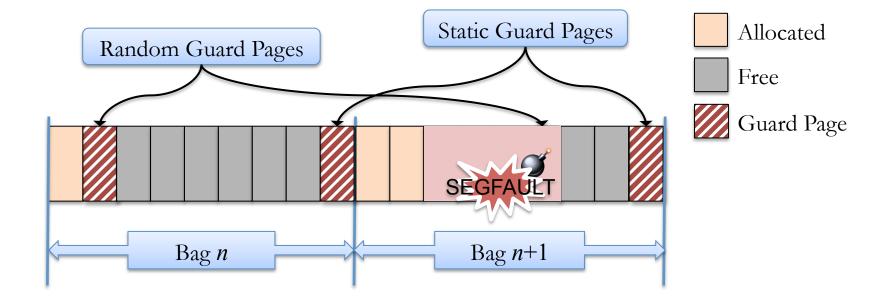

- Reliable Security
 - Stable allocation entropy across:
 - Size classes
 - Inputs
 - Execution phases
 - Applications
- Tunable security
 - User may specify the bits of entropy
 - Balances performance budget with security needs

Supplying the Specified Entropy

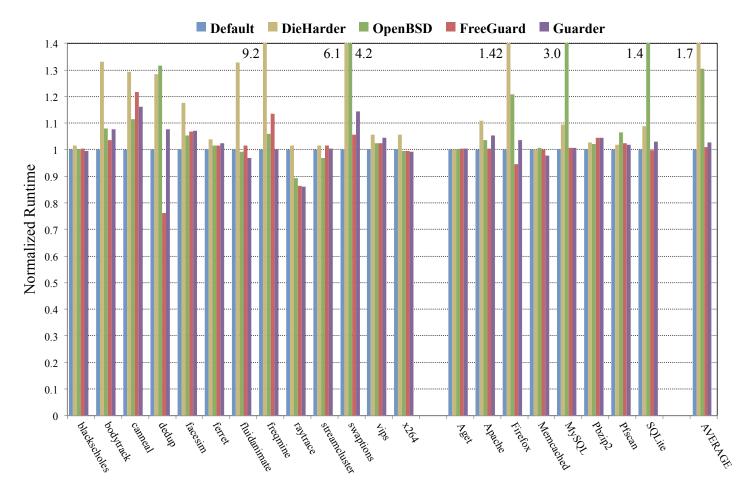
- We could use a simple array as the object buffer
 -1 out of 256 objects = 8 bits of entropy
- Challenges with this approach:
 - How to handle deallocations?
 - How to efficiently find space to reinsert freed objects?
 - How to avoid repopulating array after every allocation?
 - < 256 objects \rightarrow < 8 bits of entropy
 - How to avoid excessive checking cycles?
 - Upon allocations, probability of choosing empty slot


Combining Allocation and Deallocation Buffers

- Provides minimum of *E*-bits of user-specified entropy
 - Every thread has pair of allocation and deallocation buffers per size class
 - Allocation buffer holds 2^{E+1} objects
 - To never fall below half full ensures minimum E bits entropy
 - Allocation buffer is filled from top of heap if no freed objects are available


Tunable Security – Overprovisioning

- Dedicates a portion of heap objects as "never use"
 - Guarder's default factor = 1/8
 - Thus, each object has 1/8 probability of being excluded from future use
- Helps thwart buffer overflow
- During allocation buffer filling step:
 - 1/8 of objects will be selected randomly for exclusion
 - Corresponding slot marked empty
 - Remaining 7/8 of non-empty slots will be pulled into allocation buffer


Tunable Security – Custom Guard Pages

- Guard pages: cannot be accessed
 - Helps prevent heap spraying, buffer overflow attacks
 - Guarder's default proportion = 10%
 - During buffer filling, the given proportion of pages are marked as guard pages

Performance Evaluation

- 21 applications evaluated
 - PARSEC
 - 8 real-world
- < 3%
 overhead,
 on average
 (arithmetic mean)

All values normalized to performance of default Linux allocator

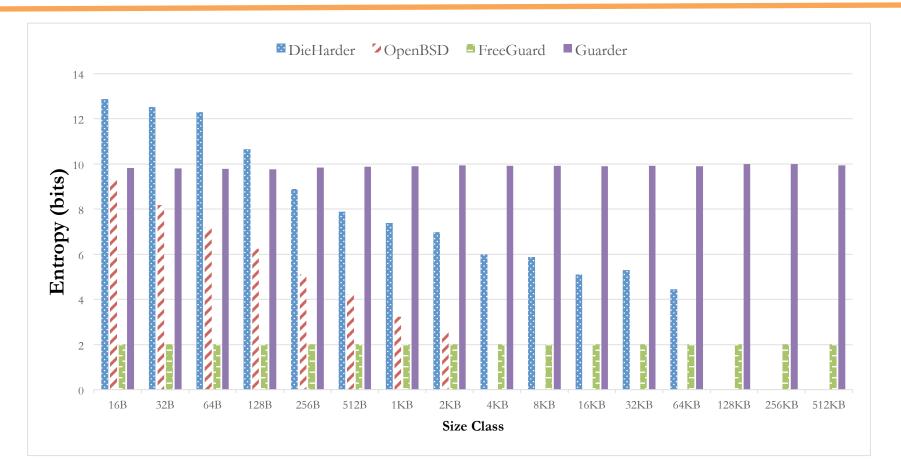
Performance Evaluation

- Two reasons why Guarder performs faster
 - Avoids use of central lock
 - Due to the following design

Tri	ials	DieHarder	OpenBSD	FreeGuard	Guarder
Allocation	Average	1.99	3.79	1	1.77
	Maximum	93	45	1	131
Deallocation	Average	12.40	1	1	1
	Maximum	141	1	1	1

Data collected with Guarder's default tunable parameter of 9 bits of entropy.

Security Feature Comparison

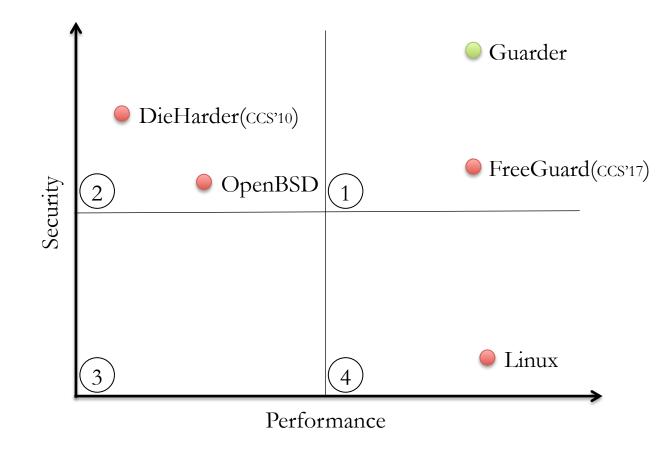

Security Feature	Linux	DieHarder	OpenBSD	FreeGuard	Guarder
Fully-segregated metadata		1	1	1	1
Randomized allocation		1	~	\bigcirc	 Image: A second s
Guard pages		\ominus	~	√	 Image: A second s
Check overflows on free			\bigcirc	√	 Image: A second s
Over-provisioned allocation		1			 Image: A second s
Detects double/invalid frees	\bigcirc	1	\bigcirc	1	 Image: A second s

✓ indicates the allocator has this feature

 \ominus indicates the implementation has some weakness

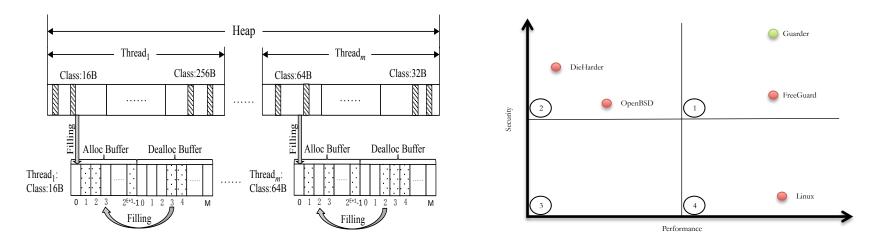
- Guarder provides the most complete feature-set as compared to existing works
- Provides the strongest guarantee with respect to randomization entropy

Entropy of Secure Allocators

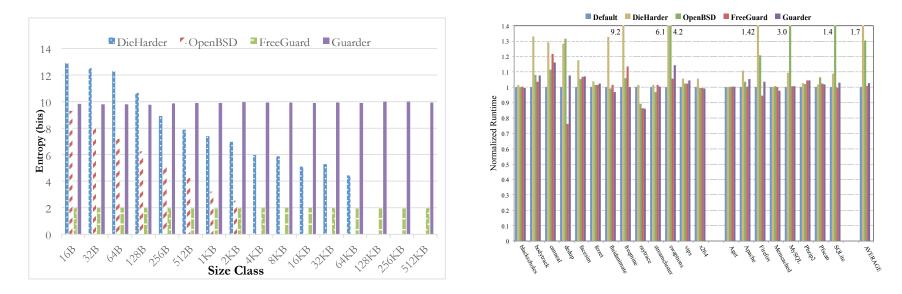

- Guarder exhibits reliable entropy
- Allows users to specify the entropy (e.g., 9 bits here)

Why Tunable Matters?

Entropy (bits)		<i>GPR=10%, OPF=1/8</i>			
8	9	10	11	12	
1.003	1.000	1.016	1.031	1.047	
Guard Page Ratio			<i>EB=9, OPF=1/8</i>		
2%	5%	10%	20%	50%	
0.987	0.990	1.000	1.016	1.046	
Over-provisioning Factor			EB=9, GPR=10%		
1/32	1/16	1/8	1/4	1/2	
0.998	0.995	1.000	1.001	1.011	


- Values normalized to default settings
- Higher security indicates higher overhead

Comparison of Existing Security Allocators



Conclusion

- GUARDER is a tunable secure heap allocator
 - Tunable security allows users to choose their security based on their performance budget
 - Reliable security provides a stable entropy level across size classes, inputs, execution phases, and applications
 - The allocation buffer design facilitates other tunable security features, heap over-provisioning and random guard pages
 - Implements greatest feature set compared to other evaluated allocators
- GUARDER provides reliable, tunable security with < 3% performance overhead

Guarder can be downloaded at https://github.com/UTSASRG/Guarder The work is also supported by Mozilla

