
FAST AND SERVICE-PRESERVING
RECOVERY FROM MALWARE
INFECTIONS USING CRIU

ASHTON WEBSTER
RYAN ECKENROD

DR. JAMES PURTILO

INTRODUCTION

●  Malware infections are essentially inevitable at scale
●  Most malware removal tools are excellent at undoing malware

changes
●  ...but what about availability of system?

MOTIVATING EXAMPLE

●  Running a web server
●  Periodically, web server is infected by malware and must be

restarted
●  Is there a better way to preserve active (benign) connections and

processing state through the restore?

STATE OF THE ART: THE NAIVE APPROACH

●  “Turn it off and on again” (and reformat drives)
●  VM Snapshots
●  Antivirus Restore

STATE OF THE ART: LOG BASED AND VM BASED METHODS

Project/Name Space Required Runtime
Overhead

Restore
Overhead

Reverts all “bad”
state?

Recovers all
“good” state?

Maintains active
connections?

Taser (Goel et al.) On the order of
GBs per day for
logs

~7% Minutes to hours In virtually all
cases

In virtually all
cases

No

Back to the Future
(Goel et al.)

On the order of
MB per program
execution

Up to 100% in
some cases

Not measured In virtually all
cases

In virtually all
cases

No

SECOM (Shan et al.) Negligible Up to 8% Not measured In virtually all
cases

In virtually all
cases

No

TimeVM (Elbadawi et
al.)

A few thousands
network packets

Not measured Less than 30
seconds

In virtually all
cases

In virtually all
cases

No

ExecRecorder
(Oliveira et al.)

5.4 MB/hour 4% on average Not Measured In virtually all
cases

In virtually all
cases

No

CRIU-MR On the order of
GBs for backups

<1% 1 ~ 3 seconds Yes (depends on
policy)

Yes (depends on
policy)

Yes

1 Same as overhead for running linux container; See Xavier et al., “Performance Evaluation of Containers...”

DESIGN AND IMPLEMENTATION

OUR SOLUTION: CRIU-MR

●  Leverages existing technologies LXC and CRIU
●  Preserves active connections
●  Recovery process takes seconds
●  Virtually no overhead during runtime
●  Malicious process state saved for forensic analysis

SOLUTION COMPONENTS: LXC – LINUX
CONTAINERS

●  Virtualization and Sandboxing for Linux using containers
●  Come in privileged and unprivileged varieties
●  Privileged Containers run as root and are not considered secure
●  Unprivileged containers run as an unprivileged user and map uids

and guids to random ranges on the actual system

SOLUTION COMPONENTS: CRIU - CHECKPOINT
AND RESTORE IN USERSPACE

●  Saves state of individual Linux processes in image files
●  Able to restore TCP connections using TCP_REPAIR socket

option
○  Araujo et al. use this TCP restore functionality to dynamically

restore infected containers to honeypots
●  Able to checkpoint and restore entire Linux containers as well

HOW WE DID IT: CRIU-MR OVERVIEW

●  Modify CRIU for Malware Recovery
○  During checkpoint, identify malicious processes/files/connections

matching policies
○  During restore, omit processes identified during checkpoint
○  No changes needed for restoring legitimate connections

●  Create Agent for receiving alerts from IDS/IPS/etc.
○  Create policies which can be read by our system to identify

malware processes and modified state

CRIU-MR POLICIES

Created policy language flexible enough to handle variety of alerts

●  Static policies
○  Assertions about state of container that should always hold
○  Stored as static input during startup of CRIU-MR agent
○  Example: Some process should never have a child process

●  Dynamic policies
○  Additional information gathered by external IDS/IPS/AV scanner

used to identify malware
○  Sent as JSON alert to CRIU-MR agent and dynamically included

in policy
○  Example: firewall violation alert

POLICY MATCHES

●  Executable Name Match
●  Filename Match
●  TCP IP Match
●  Memory Match
●  PID Match
●  Parent PID Match
●  Parent Executable Name

Match

IMPLEMENTATION: CRIU MODIFICATIONS

●  Total of 659 lines of C code added to fork of open source CRIU
repository1

●  Checkpoint
○  Reads protobuf formatted policy file
○  Hook into resource serialization to check for policy elements
○  Write violating process IDs to file omit.img
○  Malicious process image information is saved

●  Restore
○  Read back omit.img
○  At point of restore for each process, check if it is in omitted list
○  Don’t restore processes with missing state (i.e. missing files)

1 https://github.com/ashtonwebster/criu

IMPLEMENTATION: LXC

●  lxc - command to manage containers
●  Checkpointing via CRIU
●  Trivial changes to allow for added modified CRIU version
●  Open source fork of the original repository1

1https://github.com/ashtonwebster/lxc

IMPLEMENTATION: CRIU-MR AGENT

●  Simple python script
to interface with
modified CRIU/LXC

●  Accepts JSON alerts
and creates policies

●  Orchestrates
checkpoint, filesystem
recovery, and restore

●  Available as github
repository1

1https://github.com/ashtonwebster/CRIU-MR-agent

CRIU-MR AGENT: FILESYSTEM RESTORE

●  Assume that filesystem is “mostly static”

●  Keep copies of container filesystem on host
●  Quickly replace using mv command

INFECTION RECOVERY STEPS

1)  Infection - Malware is introduced to the system
2)  Detection - An AV Scanner, IDS, IPS, or other alert is generated

and sent to the CRIU-MR agent as JSON alert
3)  Preparation - JSON alert is transformed into a protobuf formatted

policy, which is in turn passed to our modified version of CRIU
4)  CRIU Checkpoint - all images generated; processes in violation

of policy written to omit.img
5)  Filesystem Restore - The backup system is placed at the

container root location and the infected filesystem is moved to a
different location

6)  CRIU Restore - Non-malware processes are restored

EXPERIMENTS

EXPERIMENT I: MALWARE RECOVERY TIME

How long does it take to remove malware?

Experiment Outline:

1)  Initial clean state of container started
2)  Malware started as root in background on container and

allowed to run for 3 seconds
3)  Detection is triggered and recovery starts

We repeat this removal process 10 times for each of 6 malware

EXPERIMENT I: MALWARE SELECTION

●  linux_lady : Malware attempting to mine bitcoin via cronjob
●  ms_bind_shellI : Metasploit exploit which binds on a port and

provides a shell
●  ms_reverse_shell : Metasploit exploit which starts a reverse

shell from port
●  wipefs : bitcoin mining executable
●  Linux.Agent : Attempts to exfiltrate /etc/shadow or /etc/passwd
●  goahead_ldpreload : An exploit on the GoAhead embedded

webserver

EXPERIMENT I: MALWARE RECOVERY TIME RESULTS

EXPERIMENT I: MEAN (STD. DEV.) DURATION PER
STEP

Step Duration (s)

Preparation 0.02 (0.01)

Checkpoint 2.16 (0.20)

Filesystem Swap 0.01 (0.01)

Restore 0.57 (0.11)

Total 2.67 (0.27)

EXPERIMENT II: AVAILABILITY IMPACT STRESS
TEST
What is the availability impact of recovering from malware?

●  7 file sizes ranging from 1KB to 1GB by powers of 10 requested
concurrently

●  Experiment lasts for 1 minute
●  At 30 seconds, malware is triggered, runs for 3 seconds, and

recovery is triggered
●  Time for each request is recorded
●  In all cases, we find that no connections were terminated

EXPERIMENT II: RESULTS

Time impact of recovery does not appear to depend on
file size

EXPERIMENT II: RESULTS (CONTINUED)

Time impact of recovery does not appear to depend on file size or
number of concurrent connections

DISCUSSION

●  What if the TCP connection which triggers a restore terminates
before we have chance to remove it?
○  Malicious process may still be removed if it references files not on

the original filesystem
●  Possible to extend to other Operating Systems (besides Linux)?

○  Blocker: TCP restore functionality
●  DoS potential?

○  Use in conjunction with patching

LIMITATIONS

●  What if a restore is triggered but no policy matches are found?
○  Fall back to start from original copy of FS
○  Connections are interrupted in this case

●  Doesn’t verify validity of alerts
○  Use public key cryptography to verify alerts using signing

FUTURE WORK

●  Dynamic Honeypot Creation
○  Current work in dynamically creating two instances after infection:

a honeypot and a restored version of the legitimate service
○  Dynamic “sanitization” of sensitive information on original

container (see Araujo et al.)
●  Dynamic Assertions
●  Verification of alerts

CONCLUSIONS

●  Considers availability of service (including active connections)
○  Able to maintain active connections even through recovery

●  Fast recovery and low overhead
○  ~3 second for recovery in most cases
○  Only overhead is from LXC

●  Modular - can connect to virtually any IDS
○  Recovery agent accepts JSON alerts from variety of sources

●  Available as open source

THANK YOU

Questions?

