
Usenix Security’18

Hang Zhang, Zhiyun Qian
University of California, Riverside

1

Precise and Accurate Patch Presence Test for Binaries

What’s the problem?1

What’s the problem?1

Short Answer: Given an Android image (or other binary), how
do we decide whether a CVE has been patched?

A real-world example
3

A real-world example
3

A real-world example
3

A real-world example
3

Open Source

A real-world example
3

Open Source ???

A real-world example
3

Open Source ???

Few source “snapshots” w/o
commit history.

A real-world example

 Are the mainstream linux/AOSP patches propagated?

3

Open Source ???

Few source “snapshots” w/o
commit history.

Open vs. Closed

 Open-source is the trend.

4

 Code reuse in closed-source
software.

Open vs. Closed

 Open-source is the trend.

4

 Code reuse in closed-source
software.

 Is the open-source security patch applied in the binary?

Why challenging?2

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

…
+ a = 0;
…

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

…
+ a = 0;
…

 Patched function as a changing haystack.

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

…
+ a = 0;
…

 Patched function as a changing haystack.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

…
+ a = 0;
…

 Patched function as a changing haystack.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

…
+ a = 0;
…

 Patched function as a changing haystack.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

#1: Needle in the (changing) haystack
6

 Security patch as a needle: small, subtle.

- if (a > 0)
+ if (a >= 0)

…
+ a = 0;
…

 Patched function as a changing haystack.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

#2: Haystack is a binary…
7

 Find the needle in a binary.

Related work
8

Related work
8

Category 1: Source-source matching.

Related work
8

Category 1: Source-source matching.

Cannot deal with binary haystack.

Related work
8

Category 1: Source-source matching.

Category 2: Binary-binary matching.

Cannot deal with binary haystack.

Related work
8

Category 1: Source-source matching.

Category 2: Binary-binary matching.

Cannot deal with binary haystack.

Lack of knowledge about the needle (i.e. the patch).

How does a human expert work?

How does FIBER work?3

-
+
...
-
+
...
+

-
+

Patch change site
analysis. (Source
level)

Binary signature
translation.

Match in binary.

Change Site Analysis: What will human do?
11

 Given an open-source security patch, you need to locate it in a binary.
 What will you do at first?

Change Site Analysis: What will human do?
11

 Given an open-source security patch, you need to locate it in a binary.
 What will you do at first?

Pick those most obvious,
unique and representative
change sites.

Change Site Analysis
12

 Unique – Exists only in the patched version.

Change Site Analysis
12

 Unique – Exists only in the patched version.

Solution: token-based string search to test uniqueness, add contexts if
not unique.

Change Site Analysis
13

 Stable – Not affected by other irrelevant changes.

Change Site Analysis
13

 Stable – Not affected by other irrelevant changes.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

Change Site Analysis
13

 Stable – Not affected by other irrelevant changes.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

Change Site Analysis
13

 Stable – Not affected by other irrelevant changes.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

Change Site Analysis
13

 Stable – Not affected by other irrelevant changes.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

Change Site Analysis
13

 Stable – Not affected by other irrelevant changes.

Solution: keep the change site as small as possible (always start from a
single line), add contexts only when necessary.

Func():
......
AAAAAA
+ the line
AAAAAA
......

Func():
......
BBBBBB
+ the line
BBBBBB
......

Func():
......
CCCCCC
+ the line
CCCCCC
......

Func():
......
DDDDDD
+ the line
DDDDDD
......

backport evolve evolve

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

Perfect: easily located by call instruction and function name (Android images have symbol table).

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

+ if(cond)

Perfect: easily located by call instruction and function name (Android images have symbol table).

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

+ if(cond)

Perfect: easily located by call instruction and function name (Android images have symbol table).

Good: both syntax structure and semantic change.

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

+ if(cond)

+ a = b * c

Perfect: easily located by call instruction and function name (Android images have symbol table).

Good: both syntax structure and semantic change.

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

+ if(cond)

+ a = b * c

Perfect: easily located by call instruction and function name (Android images have symbol table).

Good: both syntax structure and semantic change.

Meh: only semantic change without syntax change.

Change Site Analysis
14

 Easy-to-recognize – Imagine what a human prefers.

+ func_noinline()

+ if(cond)

+ a = b * c

Perfect: easily located by call instruction and function name (Android images have symbol table).

Good: both syntax structure and semantic change.

Meh: only semantic change without syntax change.

Solution: we rank the change sites based on statement types
involved, according to our domain knowledge.

-
+
...
-
+
...
+

-
+

Patch change site
analysis. (Source
level)

Binary signature
translation.

Match in binary.

What if we do it manually?
16

 How to connect the source change with binary code?

What if we do it manually?
16

if (a > 1)
 do A;
else
 do B;

 How to connect the source change with binary code?

What if we do it manually?
16

Syntax

if (a > 1)
 do A;
else
 do B;

…
cond jmp

… …

 How to connect the source change with binary code?

What if we do it manually?
16

Syntax Semantics

if (a > 1)
 do A;
else
 do B;

…
cond jmp

… …

…
a > 1?

A B

 How to connect the source change with binary code?

What if we do it manually?
16

Correlate both its syntax and semantics to the binary code.

Syntax Semantics

if (a > 1)
 do A;
else
 do B;

…
cond jmp

… …

…
a > 1?

A B

 How to connect the source change with binary code?

Binary Signature Translation
17

 Identify and organize correlated instructions in the reference binary.

Binary Signature Translation
17

 Identify and organize correlated instructions in the reference binary.

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Binary Signature Translation
17

 Identify and organize correlated instructions in the reference binary.

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

DWARF Debug Information

Binary Signature Translation
17

 Identify and organize correlated instructions in the reference binary.

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

DWARF Debug Information

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

X0 = X3 + X4

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

X0 = X3 + X4

(X3 + X4) > X2

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

X0 = X3 + X4

(X3 + X4) > X2

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

X0 = X3 + X4

(X3 + X4) > X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

X0 = X3 + X4

(X3 + X4) > X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

Root instructions: whose outputs will no longer be consumed by
other instructions.

Binary Signature Translation
18

 Find the “root” instructions.

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

X0 = X3 + X4

(X3 + X4) > X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

Root instructions: whose outputs will no longer be consumed by
other instructions.

Solution: we perform a basic-block level data-flow analysis to identify
root instructions.

Binary Signature Translation
19

 Extract semantic formulas for root instructions.

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

Binary Signature Translation
19

 Extract semantic formulas for root instructions.

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

X0 > X2

Binary Signature Translation
19

 Extract semantic formulas for root instructions.

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

X0 > X2

(X3 + X4) > X2

Binary Signature Translation
19

 Extract semantic formulas for root instructions.

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

X0 > X2

(X3 + X4) > X2

(X0 + X1) > X2

Binary Signature Translation
19

 Extract semantic formulas for root instructions.

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

X0 > X2

(X3 + X4) > X2

(X0 + X1) > X2

(a + b) > cfoo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Binary Signature Translation
19

 Extract semantic formulas for root instructions.

foo:
...
MOV X3,X0
MOV X4,X1
...

AArch64 calling
convention:
a -> X0
b -> X1
c -> X2

ADD X0,X3,X4
CMP X0,X2
BGT label1

label1:
BL bar

...

X0 > X2

(X3 + X4) > X2

(X0 + X1) > X2

(a + b) > c

Solution: we use function-level, intra-procedure and under-
constrained symbolic execution to obtain formulas.

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

-
+
...
-
+
...
+

-
+

Patch change site
analysis. (Source
level)

Binary signature
translation.

Match in binary.

Matching
21

 Quick Pass.

Matching
21

 Quick Pass.

Cond. jmp

Call bar

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
21

 Quick Pass.

Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
21

 Quick Pass.

Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
21

 Quick Pass.

Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
21

 Quick Pass.

Solution: look at easy-to-match attributes, e.g. topology, root instruction
type, etc.

Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
22

 Slow Pass.

Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
22

 Slow Pass.

(a + b) > c

(a + b) > c

a != b
Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
22

 Slow Pass.

(a + b) > c

(a + b) > c

a != b
Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

Matching
22

 Slow Pass.

(a + b) > c

(a + b) > c

a != b
Cond. jmp

Call bar

Call bar
Cond. jmp

Store

Call bar

Cond. jmp

Call sth

Solution: basically we strictly compare two formulas simplified by Z3 solver ,
with necessary relaxations. (e.g. commutative operators)

foo(a,b,c){
 ...
 if (a+b > c)
 bar(a+b);
 ...

23

Special (and Interesting) Cases

23

Func():
......
......
+ uniq_func_noinline()
......
......

23

Func():
......
......
+ uniq_func_noinline()
......
......

Simply test the function call presence, no semantic formulas needed.

23

Func():
......
......
- f(a,b)
+ f(a,c)
......
......

23

Func():
......
......
- f(a,b)
+ f(a,c)
......
......

That line matters? No, that parameter matters!

In evaluation:
107 security patches crawled from Android Bulletin (Jun 2016 – May 2017)
8 Android kernel images from 3 mainstream vendors.

How well does FIBER work?4

Accuracy
25

Accuracy
25

Accuracy: excellent, on average 94% accuracy w/o FP.

Accuracy
25

Accuracy: excellent, on average 94% accuracy w/o FP.

FP: we wrongly believe the patch is present. Dangerous!
FN: we wrongly believe the patch is not there. Extra time to confirm.

Why FN?
26

 Function inline.
 Function prototype change.
 Code customization.
 Patch adaptation.
 Other engineering issues.

Refer to section 6.2 in the paper for more details.

Why FN?
26

Function inline:
Added new callee function in the change site is inlined in different ways
across reference and target binaries.

Why FN?
26

Patch adaptation:
The change site itself has been customized during patch porting.

Performance
27

Performance
27

Performance: acceptable, some cases may take long time to match, overall
still much more efficient than manual work. Parallelization is also easily
possible.

Un-ported patches
28

Un-ported patches
28

Lag (month) Cnt.
1 2
2 5
6 2

Un-ported patches
28

Some critical patches were not propagated even after 6 months (confirmed)!

Lag (month) Cnt.
1 2
2 5
6 2

CVE-2016-7910
29

diff --git a/block/genhd.c b/block/genhd.c
index 3c9dede..0ad8796 100644
--- a/block/genhd.c
+++ b/block/genhd.c
@@ -856,6 +856,7 @@ static void disk_seqf_stop(, void
*v)

if (iter) {
class_dev_iter_exit(iter);
kfree(iter);

+ seqf->private = NULL;
}

}

0x0 [+ offset]X0struct seq_file *seqf

CVE-2016-7910
29

diff --git a/block/genhd.c b/block/genhd.c
index 3c9dede..0ad8796 100644
--- a/block/genhd.c
+++ b/block/genhd.c
@@ -856,6 +856,7 @@ static void disk_seqf_stop(, void
*v)

if (iter) {
class_dev_iter_exit(iter);
kfree(iter);

+ seqf->private = NULL;
}

}

0x0 [+ offset]X0struct seq_file *seqf

How much code do you write?4

We use Angr as our symbolic execution engine. (w/ modifications)

How much code do you write?4

We use Angr as our symbolic execution engine. (w/ modifications)

How much code do you write?4

#code of Fiber: 5,097 LOC Python.

We use Angr as our symbolic execution engine. (w/ modifications)

How much code do you write?4

#code of Fiber: 5,097 LOC Python.

Still under improvement.

We use Angr as our symbolic execution engine. (w/ modifications)

How much code do you write?4

#code of Fiber: 5,097 LOC Python.

Still under improvement.

Now fully open-sourced on Github!
https://fiberx.github.io

https://fiberx.github.io/

Thanks!
Q & A

https://fiberx.github.io

https://fiberx.github.io/

	幻灯片编号 1
	What’s the problem?
	What’s the problem?
	A real-world example
	A real-world example
	A real-world example
	A real-world example
	A real-world example
	A real-world example
	A real-world example
	Open vs. Closed
	Open vs. Closed
	Why challenging?
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#1: Needle in the (changing) haystack
	#2: Haystack is a binary…
	Related work
	Related work
	Related work
	Related work
	Related work
	How does FIBER work?
	幻灯片编号 29
	Change Site Analysis: What will human do?
	Change Site Analysis: What will human do?
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	Change Site Analysis
	幻灯片编号 48
	What if we do it manually?
	What if we do it manually?
	What if we do it manually?
	What if we do it manually?
	What if we do it manually?
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	Binary Signature Translation
	幻灯片编号 71
	Matching
	Matching
	Matching
	Matching
	Matching
	Matching
	Matching
	Matching
	Matching
	Matching
	幻灯片编号 82
	幻灯片编号 83
	幻灯片编号 84
	幻灯片编号 85
	幻灯片编号 86
	How well does FIBER work?
	Accuracy
	Accuracy
	Accuracy
	Why FN?
	Why FN?
	Why FN?
	Performance
	Performance
	Un-ported patches
	Un-ported patches
	Un-ported patches
	CVE-2016-7910
	CVE-2016-7910
	How much code do you write?
	How much code do you write?
	How much code do you write?
	How much code do you write?
	How much code do you write?
	幻灯片编号 106

