Characterization of Incremental Data Changes for Efficient Data Protection

Hyong Shim, Philip Shilane, & Windsor Hsu

Backup Recovery Systems Division EMC Corporation

© Copyright 2013 EMC Corporation. All rights reserved.

Data Protection Environment

Contributions

- Detailed analysis of data change characteristics from enterprise customers
- Design for replication snapshots to lower overheads on primary storage.
- Evaluation of overheads on data protection storage
- Rules-of-thumb for storage engineers and administrators

EMC Symmetrix VMAX Traces

Collected from enterprise customer sites

Trace Set	#Volume	# Storage Systems	Duration hrs	Estimated Capacity (GB)
1hr_1Wrt	109,263	125	30.4 [78.3]	71 [203]
1hr_1GBWrt	16,100	120	7.7 [6.7]	132 [262]
24hr_1GBWrt	508	13	24.4 [1.2]	318 [439]

Capacity and Write Footprint

Analysis for 1hr_1GBWrit

Not collected: applications using each volume

I/O Properties

Trace Set	#Write reqs (1000s)	Write size (GB)	#Read reqs (1000s)	Read size (GB)
1hr_1Wrt	72	2	167	5
	[510]	[31]	[1963]	[66]
1hr_1GBWrt	429	11	796	25
	[1270]	[80]	[4987]	[166]
24hr_1GBWrt	1803	51	7824	242
	[4839]	[338]	[23875]	[763]

- 1.9-4.3X more read I/Os than write I/Os
- 2.3-4.7X more GB read than written
- High variability
- More analysis in the paper

Trace Timeline (w = Write I/O, r = Read I/O)

wwwr ww

Storage Volume

- We measure how much data are written, on average, after seeking to a non-consecutive sector.
- Selected most sequential and most random for analysis

- We measure how much data are written, on average, after seeking to a non-consecutive sector.
- Selected most sequential and most random for analysis

Trace Timeline (w = Write I/O, r = Read I/O) W W W r W W (5 + 1) Storage Volume

- We measure how much data are written, on average, after seeking to a non-consecutive sector.
- Selected most sequential and most random for analysis

- We measure how much data are written, on average, after seeking to a non-consecutive sector.
- Selected most sequential and most random for analysis

Trace Timeline (w = Write I/O, r = Read I/O) W W W r W W (5 + 1 + 3) Storage Volume

- We measure how much data are written, on average, after seeking to a non-consecutive sector.
- Selected most sequential and most random for analysis

Trace Analysis Methodology

Trace Analysis Methodology

Trace Analysis Methodology

Replication Snapshot

Trace Timeline (w = Write I/O)

- Goal: Create a snapshot technique that is integrated with replication that decreases overheads on primary storage
- Change block tracking records modified blocks for next replication interval, possibly with a bit vector.
- A snapshot has to maintain block values against overwrites.

• Baseline Snapshot: All writes cause copy-on-write

Changed Block Replication Snapshot (CB): Only writes to tracked blocks cause copy-on-write

Changed Block with Early Release Replication Snapshot (CBER): Only writes to tracked blocks cause copy-on-write, and blocks are released once transferred

© Copyright 2013 EMC Corporation. All rights reserved.

- Baseline Snapshot: All writes cause copy-on-write
- Changed Block Replication Snapshot (CB): Only writes to tracked blocks cause copy-on-write
- Changed Block with Early Release Replication Snapshot (CBER): Only writes to tracked blocks cause copy-on-write, and blocks are released once transferred

Snapshot Storage Overheads

Rule-of-thumb: Over-provision primary capacity by 8% for snapshots

Snapshot Storage Overheads

Rule-of-thumb: Over-provision primary capacity by 8% for snapshots

Snapshot Storage Overheads

Rule-of-thumb: Over-provision primary capacity by 8% for snapshots

Snapshot I/O Overheads

Rule-of-thumb: Over-provision primary I/O by 100% to support copy-on-write related write-amplification

EMC²

Snapshot I/O Overheads

Rule-of-thumb: Over-provision primary I/O by 100% to support copy-on-write related write-amplification

Sys=1799, Block=512B

Transfer Size to Protection Storage

Rule-of-thumb: 40% of written bytes are transferred to protection storage

IOPS Requirements for Protection Storage

Rule-of-thumb: Protection storage must support 20% of the I/O per second capabilities of primary storage

Related Work

- Trace analysis
 - Numerous publications
 Most closely related is Patterson [2002]
- Snapshots
 - Common paradigm for storage but rarely integrated with incremental transfer techniques
 - Storage overheads Azagury [2002] and Shah [2006]
- Synchronous Mirroring
 - Effective when change rates are low and geographic distance is small
 - We are focused on periodic, asynchronous replication

Conclusion

Conclusion

- Trace analysis shows diversity of storage characteristics
- Snapshot overheads on primary storage can be decreased by improved integration with network transfer
- Sequential versus random access patterns affect incremental change patterns on both primary and protection storage

Rules-of-Thumb

- Over-provision primary capacity by 8% for snapshots
- Over-provision primary I/O by 100% to support copy-on-write related write-amplification
- A write buffer decreases snapshot I/O overheads but has little impact on storage overheads
- 40% of written bytes are transferred to protection storage
- Schedule at least 6 hours between transfers to minimize clean data in transferred blocks
- Schedule at least 12 hours between transfers to minimize peak network bandwidth requirements
- Protection storage must support 20% of the I/O per second capabilities of primary storage

Questions?

 \odot Copyright 2013 EMC Corporation. All rights reserved.

