
Don’t Repeat Yourself:
Automatically Synthesizing

Client-side Validation Code for
Web Applications

Nazari Skrupsky, Maliheh Monshizadeh, Prithvi Bisht, Timothy
Hinrichs, V.N. Venkatakrishnan, Lenore Zuck

University of Illinois at Chicago
Department of Computer Science

• Introduction

• Goals, Challenges

• Our Approach

• WAVES Tool

• Results

• Conclusion

Overview

• Web Application Development

✦ Client-side
- HTML, JavaScript, ...

✦ Server-side
- PHP, Java, ASP

➡ Independent development is problematic
• When the client and server share application logic

Introduction

Input Validation

WAVES: Automatic Synthesis of Client-side Validation Code for Web Applications

Nazari Skrupsky Maliheh Monshizadeh Prithvi Bisht Timothy Hinrichs V.N. Venkatakrishnan Lenore Zuck

Motivation

Traditionally: input validation done at the server-side

Disadvantages:
Round-trip delays
Traffic load, . . .

Lately: input validation done at the client-side using JavaScript

Web applications: client-side, server-side developed separately
! In different languages and platforms

Independent development is problematic when the client and server share
application logic.

For the sake of security, input validation must always occur at the server. For if
it only appears at the client, a malicious user can bypass the client validation and
supply invalid data to the server.

Servers with parameter tampering vulnerabilities are open to a variety of attacks
(eg. unauthorized access, SQL injection, Cross-site scripting)

Using our approach, a web developer only authors the server side input validation of
a web application, and our approach automatically synthesizes the input validation for
the client.

Contributions

HIGH-LEVEL BENEFITS:
1. Development Efficiency: Developers no longer repeat effort since code for client

is automatically synthesized.

2. Greater Compatibility: The potential for mismatches is reduced because the
code synthesizer can reason through the validation checks present in the server,
and generate compatible checks for the client, even accounting for language and
platform differences.

3. Code Efficiency: The code generator can also improve the efficiency of
generated client code through optimization techniques.

4. Improved Security: Our approach facilitates the development team to spend
more time on designing and implementing the server side component by
encouraging the specification of all validation checks in the server code itself. This
change in the development process greatly improves the security issues
surrounding validation code.

Example

1. The characters in user ID belong to a specified character set, which in this case is all
alphanumeric characters along with a hyphen and underscore.

2. The two supplied passwords match.

3. The user ID is available for creating an account (i.e., it is not already taken by another
user).

Our goal is to automatically synthesize the corresponding client side input valida-
tion routines. WAVES (Web Application Validation Extraction and Synthesis) requires
developers to only maintain the input validation code on the server.
WAVES then automatically synthesizes the corresponding validation code for the client.

High-level Challenges

Automatic inference of server-side constraints: Client validation
constraints typically expressed on form fields

Server side validation code is usually deeply nested in server code
flows
Server-side code validation may be performed in terms of server-side
variables

! Need to therefore extract constraints in terms of form fields

Validation involving the server: Some validation may involve
server-side state for a variety of reasons, simply because data needed for
the validation cannot be placed on the client due to reasons of
performance and / or data confidentiality. This gives rise to the challenge
of synthesizing server code that performs such validation for only a subset
of all the inputs on the client.

Preservation of application logic and security: We must ensure our
synthesized code preserves the functionality and security of the original
application.

Client-side code generation

In WAVES, once the static and dynamic constraints have been extracted from
the server, we synthesize client-side code to check those constraints.

Static constraints can be checked directly by JavaScript code.
Each constraint is represented in the logic of strings and integer
arithmetic.

Dynamic Constraints can only be checked after communicating with the
server.

At form submission, the client communicates with the server
asynchronously. The client-side code for checking dynamic
constraints consists of:
? Sending requests with form field values to the server
? processing status changes from the server’s responses into real-time feedback

for the user.

For each form field, WAVES generates an event handler that first checks the
static constraints for an error and if none is found then checks the dynamic
constraints.































































WAVES: Synthesizing client-side validation code

Server Analysis

Extract the input validation constraints checked by the web server.
Fserver = All conditions on user inputs that must be satisfied to

reach sensitive operations

Dynamic program analysis

! Submitting benign inputs to the server and inspecting the sequence
of instructions that the server executes.

Select input validation constraints (constraints that when falsified cause
the server to reject the input) and Identify type of these constraints:

Dynamic Constraints: Constraints which are dependent on the
server’s environment. (Eg. the user ID should be unique in database)
Static Constraints: Constraints which are not dependent on the
server’s environment. (Eg. the alphanumeric constraint on user ID and
the password equivalence constraint)

Server-side code generation

The asynchronous messages sent by the client to check the dynamic
constraints for a form field can only be responded to by server stubs
(special-purpose server-side code) which:

! Checks constraints in the same way the original server code does.
! Handles missing unrelated data.
! Handles the server’s environment

? Session data
? Database
? File operations

Automatic generation of server stubs:
Dependency Analysis of the variables appeared in the dynamic
constraint
Program Slicing: pruning out instructions which are not relevant to
Simplification and Optimization of the generated server stub.

Results

We selected three medium to large and popular PHP applications.
1. B2Evolution
2. Webid
3. WebSubRev

Two of the chosen forms (B2Evolution and WeBid) do not contain any client-side
validation; the other form (WebSubRev) already includes client-side validation.
WAVES was able to synthesize over 83% of the constraints identified by the ideal
synthesis.
Static constraints, those that do not rely on server-side state, dominated the total
synthesized constraints (27 / 35); for each of the 8 dynamic constraints, WAVES
synthesized an AJAX stub.

Application Ideal Synthesis WAVES
Synthesis

Existing-
Validation

B2Evolution 10+1 7+1 0
WeBid 17+8 16+6 0
WebSubRev 5+1 4+1 5+0

Using WAVES, the new forms are retrofitted with interactivity which improves the
overall usability of the application. A synthesized client provides instant feedback
as the user interacts with the form.

WAVES generated stubs which were much smaller in size than the portion of the
application relevant to validation – in most cases less than 25% of the original
LOC.

The round trip time taken by stubs in responding to AJAX requests, averaged in
the range of 43 to 164 milliseconds.

Offline Online
Application Static

Complexity
Dynamic
Complexity

Synthesis
Time
(sec)

Avg Stub
Size
(eLOC)

Avg
Server
RT (ms)

Avg
Stub
RT (ms)

B2Evolution 52 9 522 27 (26%) 65 43
WeBid 17 18 281 40 (16%) 373 164
WebSubRev 25 5 12921 29 (25%) 633 76

Conclusion

Our approach allows the developer to improve security of the web application by
focusing only on the server side development of validation.

We developed novel techniques for automatic synthesis of the client side
validation.

Our experimental results are promising: they indicate that automated synthesis
can result in highly interactive web applications that are competitive in terms of
performance and rival human-generated code in terms of coverage.

Insufficient client-side validation can cause repeat submissions, which result in
additional server workload and bandwidth use.
In the original form submission logic, whenever the user commits an error she
needs to retransmit all form data to the server, and the server needs to reprocess
the input.

WAVES effectively offloads validation onto the client, the server spends less
resources on form processing , and the overall performance of the application

improves.

Related Publication:

- Nazari Skrupsky, Maliheh Monshizadeh, Prithvi Bisht, Timothy Hinrichs, V.N. Venkatakrishnan, Lenore Zuck. “Don’t
Repeat Yourself: Automatically Synthesizing Client-side Validation Code for Web Applications” In proceedings
of USENIX WebApps’12 Conference on Web Application Development, Boston, 2012.

- Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan. “WAPTEC: Whitebox Analysis of Web
Applications for Parameter Tampering Exploit Construction”. In Proceedings of the 18th ACM conference on
Computer and communications security (CCS ’11). ACM, New York, NY

- Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V. N. Venkatakrishnan. “NoTamper:
Automatic Blackbox Detection of Parameter Tampering Opportunities in Web Applications”. In Proceedings of
the 17th ACM conference on Computer and communications security (CCS ’10). ACM, New York.

Acknowledgments:

This work was partially supported by National Science Foundation grants CNS
0917229, CNS 0845894, CNS 1065537, DGE 1069311.

mmonsh2@uic.edu, {nskrou2, pbisht2, hinrichs, venkat, zuck}@uic.edu

Parameter Tampering

WAVES: Automatic Synthesis of Client-side Validation Code for Web Applications

Nazari Skrupsky Maliheh Monshizadeh Prithvi Bisht Timothy Hinrichs V.N. Venkatakrishnan Lenore Zuck

Motivation

Traditionally: input validation done at the server-side

Disadvantages:
Round-trip delays
Traffic load, . . .

Lately: input validation done at the client-side using JavaScript

Web applications: client-side, server-side developed separately
! In different languages and platforms

Independent development is problematic when the client and server share
application logic.

For the sake of security, input validation must always occur at the server. For if
it only appears at the client, a malicious user can bypass the client validation and
supply invalid data to the server.

Servers with parameter tampering vulnerabilities are open to a variety of attacks
(eg. unauthorized access, SQL injection, Cross-site scripting)

Using our approach, a web developer only authors the server side input validation of
a web application, and our approach automatically synthesizes the input validation for
the client.

Contributions

HIGH-LEVEL BENEFITS:
1. Development Efficiency: Developers no longer repeat effort since code for client

is automatically synthesized.

2. Greater Compatibility: The potential for mismatches is reduced because the
code synthesizer can reason through the validation checks present in the server,
and generate compatible checks for the client, even accounting for language and
platform differences.

3. Code Efficiency: The code generator can also improve the efficiency of
generated client code through optimization techniques.

4. Improved Security: Our approach facilitates the development team to spend
more time on designing and implementing the server side component by
encouraging the specification of all validation checks in the server code itself. This
change in the development process greatly improves the security issues
surrounding validation code.

Example

1. The characters in user ID belong to a specified character set, which in this case is all
alphanumeric characters along with a hyphen and underscore.

2. The two supplied passwords match.

3. The user ID is available for creating an account (i.e., it is not already taken by another
user).

Our goal is to automatically synthesize the corresponding client side input valida-
tion routines. WAVES (Web Application Validation Extraction and Synthesis) requires
developers to only maintain the input validation code on the server.
WAVES then automatically synthesizes the corresponding validation code for the client.

High-level Challenges

Automatic inference of server-side constraints: Client validation
constraints typically expressed on form fields

Server side validation code is usually deeply nested in server code
flows
Server-side code validation may be performed in terms of server-side
variables

! Need to therefore extract constraints in terms of form fields

Validation involving the server: Some validation may involve
server-side state for a variety of reasons, simply because data needed for
the validation cannot be placed on the client due to reasons of
performance and / or data confidentiality. This gives rise to the challenge
of synthesizing server code that performs such validation for only a subset
of all the inputs on the client.

Preservation of application logic and security: We must ensure our
synthesized code preserves the functionality and security of the original
application.

Client-side code generation

In WAVES, once the static and dynamic constraints have been extracted from
the server, we synthesize client-side code to check those constraints.

Static constraints can be checked directly by JavaScript code.
Each constraint is represented in the logic of strings and integer
arithmetic.

Dynamic Constraints can only be checked after communicating with the
server.

At form submission, the client communicates with the server
asynchronously. The client-side code for checking dynamic
constraints consists of:
? Sending requests with form field values to the server
? processing status changes from the server’s responses into real-time feedback

for the user.

For each form field, WAVES generates an event handler that first checks the
static constraints for an error and if none is found then checks the dynamic
constraints.































































WAVES: Synthesizing client-side validation code

Server Analysis

Extract the input validation constraints checked by the web server.
Fserver = All conditions on user inputs that must be satisfied to

reach sensitive operations

Dynamic program analysis

! Submitting benign inputs to the server and inspecting the sequence
of instructions that the server executes.

Select input validation constraints (constraints that when falsified cause
the server to reject the input) and Identify type of these constraints:

Dynamic Constraints: Constraints which are dependent on the
server’s environment. (Eg. the user ID should be unique in database)
Static Constraints: Constraints which are not dependent on the
server’s environment. (Eg. the alphanumeric constraint on user ID and
the password equivalence constraint)

Server-side code generation

The asynchronous messages sent by the client to check the dynamic
constraints for a form field can only be responded to by server stubs
(special-purpose server-side code) which:

! Checks constraints in the same way the original server code does.
! Handles missing unrelated data.
! Handles the server’s environment

? Session data
? Database
? File operations

Automatic generation of server stubs:
Dependency Analysis of the variables appeared in the dynamic
constraint
Program Slicing: pruning out instructions which are not relevant to
Simplification and Optimization of the generated server stub.

Results

We selected three medium to large and popular PHP applications.
1. B2Evolution
2. Webid
3. WebSubRev

Two of the chosen forms (B2Evolution and WeBid) do not contain any client-side
validation; the other form (WebSubRev) already includes client-side validation.
WAVES was able to synthesize over 83% of the constraints identified by the ideal
synthesis.
Static constraints, those that do not rely on server-side state, dominated the total
synthesized constraints (27 / 35); for each of the 8 dynamic constraints, WAVES
synthesized an AJAX stub.

Application Ideal Synthesis WAVES
Synthesis

Existing-
Validation

B2Evolution 10+1 7+1 0
WeBid 17+8 16+6 0
WebSubRev 5+1 4+1 5+0

Using WAVES, the new forms are retrofitted with interactivity which improves the
overall usability of the application. A synthesized client provides instant feedback
as the user interacts with the form.

WAVES generated stubs which were much smaller in size than the portion of the
application relevant to validation – in most cases less than 25% of the original
LOC.

The round trip time taken by stubs in responding to AJAX requests, averaged in
the range of 43 to 164 milliseconds.

Offline Online
Application Static

Complexity
Dynamic
Complexity

Synthesis
Time
(sec)

Avg Stub
Size
(eLOC)

Avg
Server
RT (ms)

Avg
Stub
RT (ms)

B2Evolution 52 9 522 27 (26%) 65 43
WeBid 17 18 281 40 (16%) 373 164
WebSubRev 25 5 12921 29 (25%) 633 76

Conclusion

Our approach allows the developer to improve security of the web application by
focusing only on the server side development of validation.

We developed novel techniques for automatic synthesis of the client side
validation.

Our experimental results are promising: they indicate that automated synthesis
can result in highly interactive web applications that are competitive in terms of
performance and rival human-generated code in terms of coverage.

Insufficient client-side validation can cause repeat submissions, which result in
additional server workload and bandwidth use.
In the original form submission logic, whenever the user commits an error she
needs to retransmit all form data to the server, and the server needs to reprocess
the input.

WAVES effectively offloads validation onto the client, the server spends less
resources on form processing , and the overall performance of the application

improves.

Related Publication:

- Nazari Skrupsky, Maliheh Monshizadeh, Prithvi Bisht, Timothy Hinrichs, V.N. Venkatakrishnan, Lenore Zuck. “Don’t
Repeat Yourself: Automatically Synthesizing Client-side Validation Code for Web Applications” In proceedings
of USENIX WebApps’12 Conference on Web Application Development, Boston, 2012.

- Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan. “WAPTEC: Whitebox Analysis of Web
Applications for Parameter Tampering Exploit Construction”. In Proceedings of the 18th ACM conference on
Computer and communications security (CCS ’11). ACM, New York, NY

- Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V. N. Venkatakrishnan. “NoTamper:
Automatic Blackbox Detection of Parameter Tampering Opportunities in Web Applications”. In Proceedings of
the 17th ACM conference on Computer and communications security (CCS ’10). ACM, New York.

Acknowledgments:

This work was partially supported by National Science Foundation grants CNS
0917229, CNS 0845894, CNS 1065537, DGE 1069311.

mmonsh2@uic.edu, {nskrou2, pbisht2, hinrichs, venkat, zuck}@uic.edu

➡ Input validation must always occur at the server

• Automatic synthesis of input validation
for client-side

• Benefits:
• Development Efficiency

• Greater Compatibility

• Code Efficiency

WAVES
(Web Application Validation Extraction and Synthesis)

• Inference of server-side constraints

• Server-side: Variables
• Client-side: Form Fields

• Preservation of application logic and
security

• Validation involving the server state

Automatic Synthesis
Challenges

WAVES Architecture

Non-interactive
Web Application

Success Input

Server
Analysis

Code
Synthesis Integration Interactive Web

Application
Constraints

WAVES

WAVES
1- Server Analysis

Fserver = All conditions on user inputs
that must be satisfied to reach sensitive

operations

1. Submit benign inputs

2. Extract server formula

WAVES
1- Server Analysis

Non-interactive
Web Application

WAVES - Server Analysis

Success Input

Instrumented
Server

Taint Analysis

Execution
Trace

Constraints: Ci

String Solver

Constraints
 representing

Error
Conditions

inputs satisfying ¬Ci

Instrumented
Server

Execution
Traces

Taint Analysis

• Static Constraints

• pass1 == pass2

• Dynamic Constraints: Dependent on the
server state

• userID is UNIQUE

WAVES
2- Synthesis

WAVES
2- Synthesis

WAVES - Code Synthesis

Constraints
 representing

Error
Conditions

Client-side Code
Generator

Server Stub Generator

Dependency
Analysis

Program
Slicing

Server code

Server
Stub

JavaScript code

Dynamic
Constraints

Static

Constraints

Results

• Three medium to large and popular PHP
applications
• B2Evolution
• WeBid
• WebSubRev

• Successfully synthesized 83% of the
constraints

• Generated Stubs are much smaller (less
than 26%)

• Improved RTT 43 to 164 ms (originally 65
to 633 ms)

• Code efficiency

• Interactive applications

• Improved performance

Conclusion

1) Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan.
“WAPTEC: Whitebox Analysis of Web Applications for Parameter
Tampering Exploit Construction”. In Proceedings of the 18th ACM
conference on Computer and communications security (CCS ’11). ACM, New York,
NY.

2) Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V. N.
Venkatakrishnan. “NoTamper: Automatic Blackbox Detection of
Parameter Tampering Opportunities in Web Applications”. In
Proceedings of the 17th ACM conference on Computer and communications
security (CCS ’10). ACM, New York, NY.

Related Papers

Questions?

