

Anomaly Detection on Golden Signals

NetRadar •

Yu Chen

IOP@Baidu

Monitoring the healthiness of services

- Golden signals
 - Latency, traffic, errors, saturation
- Challenges
 - Abnormal data are rare (<1%)
 - Hard to label
- Method
 - Statistical analysis + machine learning
 - >90% precision & recall

Latency: usual approach

- Detect whether the latency is too high
 - History data $\{x_i\}, i = 1, 2, \dots, n$

- Mean
$$\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{\bar{x}}$$

- Standard deviation $s = \sqrt{\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n-1}}$
- Alert when $x_j > \bar{x} + 3s$
 - x_j is an observation of latency

Translation to statistics

- Assume latency is normally distributed
 - Normal (Gaussian) Distribution $\mathcal{N}(\mu, \sigma^2)$
 - Parameter estimation $\mu = \bar{x}, \ \sigma = s$
 - Probability $P\{x_j>\mu+3\sigma\}=0.0013$

The statistical approach

- The signal x follows some random distribution(s)
- Estimate the distribution(s) using history data $\{x_i\}$
- Pick a threshold t such that $P\{x > t\}$ is very small
 - $-p=P\{x>t\}$ is the probability threshold
 - -t is the signal threshold

Why using probability?

- p refers to the probability of false alarms
 - Close to engineers' feeling
 - Anomalies are rare, rare values are usually abnormal
 - Remains constant
 - Rebuild the distribution model periodically
 - ullet Automatic adjustment of the signal threshold t
- How to choose p?
 - 1 point per minute
 - 1 false alarm per day
 - 1440 points per day $\rightarrow p \approx 0.0007$

Building the distribution model

"Assume latency is normally distributed"

– Correct or not?

Kernel density estimation

History =
$$\{x_1, x_2, \dots, x_n\}$$

$$f(x) = \frac{1}{n} \sum_{i} K(x; x_i)$$

$$K(x; x_i) = \mathcal{N}(\mu = x_i, \sigma^2)$$

$$\sigma \approx 1.06sn^{-\frac{1}{5}}$$

Abnormal values in history

- Signal threshold t
 - Probability threshold p = 0.001
 - Find t such that

$$P\{x > t\} = \int_{t}^{+\infty} f(x)dx = p$$

Abnormal values enlarge the threshold

Removing abnormal values

- Linear discrimination analysis (LDA)
 - Sort $x_1 \le x_2 \le \cdots \le x_n$
 - Split into 2 clusters at every possible position

$$\{x_1, x_2, \dots, x_i\}$$
 $\{x_{i+1}, x_{i+2}, \dots, x_n\}$

Compute scatter within cluster

$$ar{x}_l = rac{x_1 + x_2 + \dots + x_i}{i}$$
 $ar{x}_r = rac{x_{i+1} + x_{i+2} + \dots + x_n}{n-i}$
 $s_w = \sum_{k=1}^i (x_k - ar{x}_l)^2 + \sum_{k=i+1}^n (x_k - ar{x}_r)^2$

$$s_w = \sum_{k=1}^{r} (x_k - \bar{x}_l)^2 + \sum_{k=i+1}^{n} (x_k - \bar{x}_r)^2$$

Removing abnormal values (cont.)

- Search for downward spike in the position-scatter plot
 - Remove values at the right side of the spike

Saturation

- Utilization of resources
 - CPU, Memory, Disk, Network
 - In the form of ratio/percentage
- Alert for overload
- Alert for unexpected resource consumption
 - Similar to latency alerting: KDE
 - Gaussian kernels fail to ensure thresholds in [0, 1]
 - Beta distribution as kernels $f(x) = \frac{1}{n} \sum_{i} \text{Beta}(x; \alpha_i, \beta_i) = \frac{1}{n} \sum_{i} \frac{x^{\alpha_i 1} (1 x)^{\beta_i 1}}{B(\alpha_i, \beta_i)}$

$$- x_i = \frac{\alpha_i - 1}{\alpha_i + \beta_i - 2} \quad \alpha_i = cx_i + 1 \quad \beta_i = c(1 - x_i^i) + 1$$

- Empirically $c \in [100, 200]$

Errors

- The question
 - x requests, y errors, is y too large?
- Approaches
 - Thresholding on absolute value
 - Larger x leads to larger y
 - Different thresholds for different signals
 - Thresholding on ratio r = y/x
 - ullet Variance of r is larger with smaller x

Problems with ratio

Solution: binomial distribution

- y follows binomial distribution with parameters x and p_0
 - Coin flipping: each request would have a chance of p_0 to end as an error

$$P\{y; x, p_0\} = \binom{x}{y} p_0^y (1 - p_0)^{x - y} \qquad P\{y > y_j; x_j, p_0\} = \sum_{k = y_j + 1}^{x_j} \binom{x_j}{k} p_0^k (1 - p_0)^{x_j - k}$$

Estimate p_0 with history data

$$p_0 = rac{\sum_i y_i}{\sum_i x_i}$$

- Estimate by Gaussian distribution to reduce computation cost
 - Proportion z-test

$$z = rac{rac{y_j}{x_j} - p_0}{p_0(1 - p_0)} \sqrt{x_j}$$

Result of proportion z-test

Traffic

- # of requests per interval
- Need to predict expected values
 - Daily fluctuation
 - Drop is more severe than rise
- Basic idea
 - Predict
 - Detect based on prediction and observation

Prediction

Smoothing: smooth baseline + noises

- Moving average
 - Same weight in window
- Exponential smoothing
 - Larger weight on new data
- Robust linear regression
 - Linear assumption on short segment
- Variational auto encoding (VAE)
 - Non-linear assumption + long segment
- Holt-Winters
 - Linear trend + periodic pattern
- Periodic pattern mining
 - Multiple daily patterns

Pattern: Periodic patterns

Robust linear regression

- **Assumptions**
 - Observed traffic $y_t = \hat{y}_t + \epsilon_t$
 - Smooth baseline

both baseline
$$\hat{y}_t = k imes t + b$$
 Linear in short segments

Linear regression

$$k^*, b^* = \operatorname{argmin}_{k,b} \sum (k \times t + b - y_t)^2$$

- Susceptible to abnormal points
- Robust linear regression

$$k^*, b^* = \operatorname{argmin}_{k,b} \sum_{t} |k \times t + b - y_t|$$

Resistant to abnormal points

Robust linear regression (result)

The slow catch-up effect

- Resistant to abnormal points means slow catch up
 - on abnormal points
 - on sharp turns
- Non-linear regressions?

Variational auto-encoder

- Neural network
 - Input layer: signal segments
 - E.g. 2000 points
 - Hidden layer: "features" of input signal segments
 - E.g. 1000 vertices
 - Output layer: reconstructed "signal segments"
 - Mean and variance
- Prediction value = mean of the output layer
- Width of the hidden layer
 - Large → encode more sharp turns
 - Small → produce smoother output
- Paper
 - "Donut", Xu et al. WWW 2018

Variational auto-encoder

Periodic pattern mining

- Small and long drops
- Multiple patterns
 - Workdays / weekends / holidays
- Level drift
- Idea
 - Shape extraction
 - Level expansion

Shape extraction

Cumulative sum

Normalize

Shape extraction: the math

- Multinoulli distribution
 - -T bins per day
 - Sampling interval = 1min $\rightarrow T = 1440$
 - N requests per day
 - Put N requests to T bins based on a random distribution
 - The normalized curve is the CDF of the distribution
- Shape similarity = distribution similarity
 - Measurement: Kolmogorov-Smirnov test

$$D = \sup |F_1(x) - F_2(x)|$$

- Clustering: DBSCAN
 - DBSCAN: remove outlier days
 - Hierarchical clustering

Level expansion

Given a prefix of observations

 $\{y_t\}$

And the shape

 $\{p_t\}$

- Average of a cluster
- Find N to maximize the likelihood

$$N^* = \operatorname*{argmax}_{N} P\{\{y_t\} | N, \{p_t\}\}$$

- Multinomial distribution
 - Susceptible to abnormal values

$$N^* = \frac{\sum_t y_t}{\sum_t p_t}$$

• T independent binomial distributions

$$N^* = \frac{-|\{y_t\}| + \sqrt{|\{y_t\}|^2 + 4(\sum_t \frac{p_t}{1 - p_t})(\sum_t \frac{y_t^2}{p_t(1 - p_t)})}}{2\sum_t \frac{p_t}{1 - p_t}}$$

Periodic prediction

Periodic prediction

Anomaly detection for traffic

- Observation y_t
- Prediction \hat{y}_i
- Poisson distribution

Poisson
$$(k; \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

 $\lambda = \hat{y}_t$ $k = y_t$

 Estimated by Gaussian distribution

$$z = \frac{y_t - \hat{y}_t}{\sqrt{\hat{y}_t}}$$

Are requests really independent?

- No, they are dependent!
 - One click generates multiple requests by JavaScript
 - Threshold of z depends on the signal
- How to get around
 - Observed traffic $\{y_t\}$ and true traffic $\{x_t\}$
 - Assume $y_t = c \times x_t$
 - Then $z_t^y = \frac{y_t \hat{y}_t}{\sqrt{y_t}} = \frac{cx_t c\hat{x}_t}{\sqrt{cx_t}} = \sqrt{c}z_t^x$ $z_t^x \sim \mathcal{N}(0,1) \longrightarrow z_t^y \sim \mathcal{N}(0,c)$

 - Median absolute deviation to estimate robustly

$$\tilde{z} = \text{median}(\{z_t\})$$

$$MAD(\{z_t\}) = median(\{|z_t - \tilde{z}|\})$$

$$MAD(\{z_t^y\}) = median(\{z_t^x\})\sqrt{c} = 0.6745\sqrt{c}$$

Applications

Scenario	Precision	Recall	Signal type
Search engine traffic	100%	100%	Traffic
Feed traffic	100%	100%	Traffic
Feed click ratio	100%	100%	Errors
Advertisement income	95%	95%	Traffic
External network connectivity monitoring	94%	96.3%	Errors + Traffic
Datacenter network connectivity monitoring	92.3%	99.2%	Errors

Conclusion

- Statistical analysis + Unsupervised learning
- Latency
 - KDE, automatic removal of abnormal values in history
- Saturation
 - KDE, Beta kernel
- Errors
 - Binomial distribution, proportion z-test
- Traffic
 - Prediction algorithms: robust linear regression, VAE, periodic pattern mining
 - Poisson distribution, MAD

THANK YOU!

BAIDU@IOP出品