
Support Operations Engineering:
Scaling Developer Products to the Millions

Junade Ali - @IcyApril

Challenges

● Used by 20+ million web properties
○ Free, self-service, and Enterprise service levels
○ Pro-bono enterprise-grade protection to at-risk Public Interest Groups

● Ever growing customer support requests
○ ~15,000 customer support tickets per month
○ Complex and varied web hosting environments
○ Everyone from florists to Fortune 1000 companies
○ 24x7 TSE coverage

First Support Operations (SOPS) service

● HelperBot Stateless
○ A diagnostics API

● Exposed in many contexts
○ Internal service-to-service
○ API Gateway
○ Customer communication webhooks

● Uses many data sources & active tests

Campaign Metrics

● Chrome 68 Release
● 91,895 daily tests
● 1 month of human

manual testing

The Need for Automation

● Customer Tooling > Agent Tooling
● Tooling != Automation
● Automation > Customer Tooling

NLP is far from perfect...

● State of the Art NLP wasn’t suitable
○ ~70-80% accuracy
○ ~50% for best commercial POC

● Tolerances for false positives vary
○ Free or paid?
○ General question or sensitive issue?

Scope for Failure

NLP Pipeline
1. NER
2. Multi-Classifier
3. Over-Engineering*
4. Formal Contracts*
* applied depending on
risk sensitivity

False Positive Rate:
● Multi-Classifier: 21%
● Over-Engineering: 1-2%
● Formal Contracts: 0%

Novel Safety Engineering Approaches

● Baseline
○ Failure is tolerable due to majority benefit
○ I.e. Low risk & free user wait time for response

● Binary Classifier
○ Higher risk, but not sensitive

● Formally Defined Safety Checks
○ Sensitive requests
○ May require customer validation actions

https://ieeexplore.ieee.org/abstract/document/8820497/

https://ieeexplore.ieee.org/abstract/document/8820497/

Over-Engineering for Safety

● Binary Classification
○ Cascading failure to reduce false positives
○ Non-sensitive requests by paying users
○ Convolutional Neural Network

● Use of Diagnostics
○ Corresponding failed diagnostics is also tolerable

Cascading Failure can be a good thing...

Formally Defined Run-Time Contracts

How?
1. Contracts + data stored
2. Customer validation
3. Contracts revalidated
4. Downstream APIs revalidate
Failure cases halt processing and
remove data fields to prevent
software errors.
Expected failures linked to JIRAs,
unexpected to Sentry/PagerDuty.

Data Matters

● Simplified taxonomy
○ Encourages greater accuracy

● Classification to fill in the gaps
○ Used to add additional dimensions to reporting

● Make everything self-serve
○ Attach repeat configuration change items to JIRAs

Next-Gen Security Operations Centre

● Proactive messaging for self-serve users
● Can same be applied to a SOC?

○ Active testing
○ Analysis of passive traffic data flow

Multi-Dimensional Visibility

Colour = path ratio < 0.554 in red
Scatter size = UA ratio*2500

Additional properties for disambiguation

Intelligent Threat Fingerprinting

Εtot - success rate of brute force attack
RV - abnormal HTTP status (429, 5xx, etc)
𝓝zones - normalised sites attacked

Intelligent Threat Fingerprinting

On these 3 aggregate
properties, unsupervised
clusterization is able to
correlate to fingerprint of
attack.
E.g. Cluster 1 (highest success):
● median success rate of 30.5%
● 99.5% req from same UA
● 99.45% same country

Current state

● HelperBot formed of 6 services
○ From chatbot to SOC anomaly detection
○ 10 ancillary SOPS services

● Metrics
○ TSF: 57.3% deflection (excl. email tickets)
○ HelperBot: ~60% free ticket automation
○ ~78% without human interaction

● Plenty more to do
○ 24% of all tickets automated
○ 35% planned EOY ‘19, 50% in ‘20
○ Groundwork laid to drive ever greater automation

SOPS Principles

● Favour automation over tooling
● Question the fundamentals
● Context-Sensitive Safety
● Be diligently data driven
● Build services as an asset

Thank you!
Get in contact:
@IcyApril
junade@cloudflare.com

