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Bloomberg: An Emphasis on Reliability
• 7,000+ software engineers

• One of the largest private networks in the world

• Over 300 billion pieces of real-time market data 
each day; peak of more than 15 million 
messages/sec (ticks)

• 2 million news stories ingested / published 
each day (500+ news stories ingested/sec from 
125K+ sources)

• Over 2 billion messages and Instant Bloomberg 
(IB) chats handled daily
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What have we learned from Chaos Engineering?
● Shorten the time to having a resilient system

● Designing your experiments provides half of the learning

● Codify your expectations as “unit tests” for reliability and resilience

…but why stop there?
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Your Least Favorite, But Very Useful Development Practice
● Test-driven development has been “proven”[1][2][3] to be beneficial…

○ …and also not[4][5][6]

○ “It turns out that test-first does not accelerate the implementation, and 
the resulting programs are not more reliable, but test-first seems to 
support better program understanding.”[2]

● Effectiveness is dependent on accuracy of the tests…
○ …but chaos experiments are highly accurate!

What happens when this model is applied to resilience?
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Your Least Favorite, But Very Useful Development Practice

What happens when this model is applied to resilience?

[3]
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Resilience-First Development
● Shorten the time to having a resilient system

● Designing your experiments provides half of the learning

● Codify your expectations as “unit tests” for reliability and resilience

○ EVEN SHORTER!

○ LEARNING SOONER!

○ RESILIENCE IS A FEATURE!
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Our Journey
Building a Highly Resilient and Highly Available Log 
aggregation architecture on Public Cloud
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Log Aggregation Architecture
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Designing the experiments provided 
half of the learning
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How do we measure steady state?
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Do we have the right logs and metrics collected?
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Do we have redundancies for critical components?
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Architecture with all the bells and whistles
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“Unit Tested” Failover Logic
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“Unit Tested” Failover Logic
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Put Your Designs to the Test
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Confronting Our Design Choices
● Are we too hasty to failover?

○ Node Failure and Pod Failure experiments

● Are timestamps a reliable file name?
○ Time Offset and Time Skew experiments

● Are we using the right defaults?
○ Application Failures
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Knowing the (Service) Limits
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SLOs & Application Limitations

Retry Logic Memory Buffer
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SLOs & Platform Limitations
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Observability: A Force Multiplier!
How can you make informed decisions about a distributed system 
without seeing inside that system?

● Validate your early choices in metrics and service-level indicators
● Determine initial alerting decisions based on results, not guesses
● Peer inside the “black box” components in your system
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Observability: A Force Multiplier!

Better 
Observability

Earlier in 
Development

More Time Spent Making 
Better Decisions

How can you make informed decisions about a distributed system 
without seeing inside that system?
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Setting Up Future Success
● Early understanding of SLO factors

● A scientific method for change management
○ Failure “units” are now reliability regression checks for the system
○ A/B validation for design changes, alerting changes, configuration 

changes…
○ Automation is your friend!

● Prepared for production gamedays
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Where do we go from here?
Resilience checklist for new system design:

➔ Pod / Node failure
➔ Regional failure
➔ Network black holes
➔ Network latency
➔ Time offset / clock skew
➔ CPU / Memory / I/O stress
➔ API access denial
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Where do you go from here?
● Resilience stress tests should be part of certifying your 

distributed systems’ designs

● Day-1 chaos accelerates identification of:
○ Factors that influence your SLIs
○ Design defects
○ Missing metrics or other health indicators

● Break things, learn more, and have fun!
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Thank you!
We are hiring: bloomberg.com/engineering

http://bloomberg.com/engineering
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