
© 2023 Bloomberg Finance L.P. All rights reserved.

Chaos-Driven Development: 
TDD for Distributed Systems

SRECon Americas 2023
March 23, 2023

Dhishan Amaranath, Cloud SRE
Tucker Vento, Resilience Engineering Team Lead



Who We Are
Dhishan Amaranath
Public Cloud SRE, Resilience Guild Contributor
Bloomberg

Tucker Vento
Resilience Engineering Team Lead
Bloomberg



© 2023 Bloomberg Finance L.P. All rights reserved.

Bloomberg: An Emphasis on Reliability
• 7,000+ software engineers

• One of the largest private networks in the world

• Over 300 billion pieces of real-time market data 
each day; peak of more than 15 million 
messages/sec (ticks)

• 2 million news stories ingested / published 
each day (500+ news stories ingested/sec from 
125K+ sources)

• Over 2 billion messages and Instant Bloomberg 
(IB) chats handled daily



© 2023 Bloomberg Finance L.P. All rights reserved.

What have we learned from Chaos Engineering?
● Shorten the time to having a resilient system

● Designing your experiments provides half of the learning

● Codify your expectations as “unit tests” for reliability and resilience

…but why stop there?



© 2023 Bloomberg Finance L.P. All rights reserved.

Your Least Favorite, But Very Useful Development Practice
● Test-driven development has been “proven”[1][2][3] to be beneficial…

○ …and also not[4][5][6]

○ “It turns out that test-first does not accelerate the implementation, and 
the resulting programs are not more reliable, but test-first seems to 
support better program understanding.”[2]

● Effectiveness is dependent on accuracy of the tests…
○ …but chaos experiments are highly accurate!

What happens when this model is applied to resilience?



© 2023 Bloomberg Finance L.P. All rights reserved.

Your Least Favorite, But Very Useful Development Practice

What happens when this model is applied to resilience?

[3]



© 2023 Bloomberg Finance L.P. All rights reserved.

Resilience-First Development
● Shorten the time to having a resilient system

● Designing your experiments provides half of the learning

● Codify your expectations as “unit tests” for reliability and resilience

○ EVEN SHORTER!

○ LEARNING SOONER!

○ RESILIENCE IS A FEATURE!



© 2023 Bloomberg Finance L.P. All rights reserved.

Our Journey
Building a Highly Resilient and Highly Available Log 
aggregation architecture on Public Cloud



© 2023 Bloomberg Finance L.P. All rights reserved.

Log Aggregation Architecture



© 2023 Bloomberg Finance L.P. All rights reserved.

Designing the experiments provided 
half of the learning



© 2023 Bloomberg Finance L.P. All rights reserved.

How do we measure steady state?



© 2023 Bloomberg Finance L.P. All rights reserved.

Do we have the right logs and metrics collected?



© 2023 Bloomberg Finance L.P. All rights reserved.

Do we have redundancies for critical components?



© 2023 Bloomberg Finance L.P. All rights reserved.

Architecture with all the bells and whistles



© 2023 Bloomberg Finance L.P. All rights reserved.

“Unit Tested” Failover Logic



© 2023 Bloomberg Finance L.P. All rights reserved.

“Unit Tested” Failover Logic



© 2023 Bloomberg Finance L.P. All rights reserved.

Put Your Designs to the Test



© 2023 Bloomberg Finance L.P. All rights reserved.

Confronting Our Design Choices
● Are we too hasty to failover?

○ Node Failure and Pod Failure experiments

● Are timestamps a reliable file name?
○ Time Offset and Time Skew experiments

● Are we using the right defaults?
○ Application Failures



© 2023 Bloomberg Finance L.P. All rights reserved.

Knowing the (Service) Limits



© 2023 Bloomberg Finance L.P. All rights reserved.

SLOs & Application Limitations

Retry Logic Memory Buffer



© 2023 Bloomberg Finance L.P. All rights reserved.

SLOs & Platform Limitations



© 2023 Bloomberg Finance L.P. All rights reserved.

Observability: A Force Multiplier!
How can you make informed decisions about a distributed system 
without seeing inside that system?

● Validate your early choices in metrics and service-level indicators
● Determine initial alerting decisions based on results, not guesses
● Peer inside the “black box” components in your system



© 2023 Bloomberg Finance L.P. All rights reserved.

Observability: A Force Multiplier!

Better 
Observability

Earlier in 
Development

More Time Spent Making 
Better Decisions

How can you make informed decisions about a distributed system 
without seeing inside that system?



© 2023 Bloomberg Finance L.P. All rights reserved.

Setting Up Future Success
● Early understanding of SLO factors

● A scientific method for change management
○ Failure “units” are now reliability regression checks for the system
○ A/B validation for design changes, alerting changes, configuration 

changes…
○ Automation is your friend!

● Prepared for production gamedays



© 2023 Bloomberg Finance L.P. All rights reserved.

Where do we go from here?
Resilience checklist for new system design:

➔ Pod / Node failure
➔ Regional failure
➔ Network black holes
➔ Network latency
➔ Time offset / clock skew
➔ CPU / Memory / I/O stress
➔ API access denial



© 2023 Bloomberg Finance L.P. All rights reserved.

Where do you go from here?
● Resilience stress tests should be part of certifying your 

distributed systems’ designs

● Day-1 chaos accelerates identification of:
○ Factors that influence your SLIs
○ Design defects
○ Missing metrics or other health indicators

● Break things, learn more, and have fun!



© 2023 Bloomberg Finance L.P. All rights reserved.

Thank you!
We are hiring: bloomberg.com/engineering

http://bloomberg.com/engineering


© 2023 Bloomberg Finance L.P. All rights reserved.

Sources
[1] Huang, L., & Holcombe, M. (2009). Empirical investigation towards the effectiveness of Test First 
programming. Inf. Softw. Technol., 51, 182-194.

[2] Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On the effectiveness of the test-first approach to 
programming. IEEE Transactions on Software Engineering, 31, 226-237.

[3] Padberg, F., & Müller, M.M. (2003). About the Return on Investment of Test-driven Development.

[4] Müller, M.M., & Hagner, O. (2002). Experiment about test-first programming. IEE Proc. Softw., 149, 
131-136.

[5] Roman, A., & Mnich, M.A. (2020). Test-driven development with mutation testing – an experimental study. 
Software Quality Journal, 29, 1 - 38.

[6] Santos, A., Vegas, S., Dieste, Ó., Uyaguari, F.U., Tosun, A.N., Fucci, D., Turhan, B., Scanniello, G., 
Romano, S., Karac, I., Kuhrmann, M., Mandic, V., Ramač, R., Pfahl, D., Engblom, C., Kyykka, J., Rungi, K., 
Palomeque, C., Spisak, J., Oivo, M., & Juristo, N. (2020). A family of experiments on test-driven 
development. Empirical Software Engineering, 26.


