
Mux
How I stopped worrying

and learned to love the multiplexing.



Berk D. Demir
@bd



Today, we’ll talk about 
RPC Multiplexing.



OSI 7 Layer Model



Physical

Data Link

Network

Transport

Session

Presentation

Application

IEEE 802.3 Physical

IEEE 802.3 MAC

IP

TCP

HTTP

TLS

(a bit of TLS)



What’s the problem?



Head of Line Blocking

Not every interaction is a single RPC.

Calls for discrete resources should not 
block each other 



What’s the big deal?

Just open more TCP 
connections!



Free as in beer

New socket connections are not 
free as in resources and latency.

(Remember TCP 3-way handshake)



… also TCP Slow Start

In the data center
Across data centers

From the POPs



For every TCP 
connection

You have a separate network 
queue and the half of separate 

liveness detection logic.



TCP Keepalives.
…or a blast from October 1989

Not more frequent than one every 
2 hours.

It’s the kernel, not the application.



What about?

Liveness Detection
Request Cancellation 

(cost of tearing down a TCP connection is too damn high!)

Availability Advertisement



…also

Control Plane vs Data Plane
Separate these so we can have 

out-of-band messaging(node-to-node) 
without affecting data plane.



Back to those 7 Layers



Physical

Data Link

Network

Transport

Session

Presentation

Application

IEEE 802.3 Physical

IEEE 802.3 MAC

IP

TCP

Thrift



These concerns could be 
addressed purely in 

Layer 5.

We needed a session 
protocol.



Explicit Queue 
Management

NACKs
Leases

Proper back pressure signaling



Interesting Use Cases

Destination Dispatch
GC Avoidance

Service-to-service Authentication
awk for Distributed Systems



Destination Dispatch

Intelligent routing and load 
balancing for less intelligent 

clients.



Destination Dispatch

unicorn 1

unicorn 3

unicorn 2 muxproxy

mux router

service x

service y

service z

web host



Destination Dispatch

Mux routers at the data center 
edge for load, global incident 
status and preference aware 

RPC routing.



GC Avoidance

We can easily predict a young 
generation collection.

If we can gracefully drain all our 
clients via leases, why worry 

about GC pauses?



RPC Authentication
(Lessons from HTTP)

Authenticating every single RPC 
is expensive. Implementing AAA 
in application or network layer is 

disruptive. Let’s address the 
concern in the session layer.



RPC Authentication
(Lessons from HTTP)

expensive: HTTP Basic/Digest 
disruptive: Modify L7, IPsec

 session layer: Implement your 
own with X.509, Kerberos, etc.



Debugging Distributed 
Systems is HARD.

Production Readiness Reviews 
are tough.

Production is real life and it is wild.



RPC TAP
(awk for Distributed Systems)

inject failure
simulate latency, backpressure

rewrite destinations



More

Mux is part of Finagle
and it’s open source.



Related

HTTP/2 & QUIC



There must be 
questions!

@bd



Jeff Dean Numbers
L1 cache ref: 1ns

Branch mispredict: 3ns
L2 cache reference: 4ns
Mutex lock/unlock: 17ns

Main memory reference: 100ns
Send 2000 bytes over the network: 400ns

Compress 1K with Zippy: 2,000ns
Read 1MB from memory (seq): 12,000ns

SSD random read: 16,000ns
Read 1M from SSD: 200,000ns

RTT in the same DC: 400,000ns
RTT from SMF1-to-ATLA: 80,000,000ns

RTT from Sacramento-to-Amsterdam: 150,000,000ns

http://www.eecs.berkeley.edu/~rcs/research/

http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

