
Netflix RaaS: Reliability as a Service
Coburn Watson

@coburnw
● Cloud Performance, Reliability (and Capacity) @Netflix

○ Reactive and Proactive consultation
○ Build innovative performance analysis tooling

■ Microscope on Microservices Netflix Tech Blog
○ Drive operational best practice adoption
○ Optimize usage of AWS cloud
○ Optimize Netflix Linux BaseAMI and middleware configurations
○ Production On-Call resources as needed

● Hiring!
● Handing out Simian Army stickers after the talk

http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html

Netflix, Inc.
● Early to the cloud

○ tens of thousands of AWS instances, 3 regions
○ autoscale ~3k instances a day (per region)
○ failover traffic between regions

● Freedom & Responsibility Culture
● 34% of US Internet Traffic at Night*

○ Build and Maintain own CDN

● > 2B hours of streaming per month
○ 55M+ subscribers
○ Strong focus on originals

* 6% of traffic is upload

http://www.slideshare.net/reed2001/culture-1798664
http://www.slideshare.net/reed2001/culture-1798664

The Challenge
● Finding the right balance

○ Dev vs. Ops responsibilities for a team
○ Shared versus distributed model

● Further Complications
○ large microservice-based architecture (many moving parts)
○ numerous, often complex, frameworks used across microservices
○ asymmetric distribution of operational complexity across teams

A Primitive DevOps Model

Let me just push to Production..

(Implicit) Guidance

● Don’t break production!
○ Catch “bad” code early
○ Stagger global pushes
○ Rollback quickly if needed
○ Create and maintain effective alerts
○ Tune circuits (isolate failure)
○ Ensure sufficient capacity

■ but don’t use too much...
○ Remove misbehaving nodes

A high bar...
● Requires broad and deep expertise
● Complicates hiring strategy
● Dilutes operational focus of team
● Introduces manual error
● Exacerbates configuration drift
● Encourages development of operational

point solutions

● possibly impact engineer morale

One Possible Solution

Operations Engineering

Operations Engineering
5 Primary Teams

○ Engineering Tools
○ Insight Engineering
○ Crisis Response Engineering
○ Traffic & Chaos
○ Cloud Network Engineering
○ Performance and Reliability Engineering

Strategy
● Lower operational barriers for getting code into production

○ Eliminate undifferentiated heavy lifting

● Create effective feedback loops (context)
○ Performance and reliability
○ Code Quality
○ Efficiency and Cost

Strategies Applied

Build Bake Deploy
Canary

Analyze
Canary

Push Region
1

Push Region
2

Make It Happen

Continuous Integration
● One button staggered global deploy (or scheduled)
● Integrates with Automated Canary Analysis Framework

Catch “bad” code early
● Automated Canary Analysis

Tune Circuits
● Fault isolation frameworks can require significant babysitting

○ Netflix framework is Hystrix
tunable

tunable

tunable

https://github.com/Netflix/Hystrix

Tune Circuits, cont.
● Strategy

○ Consult experts users of Hystrix within Netflix
○ Identify possible models to apply
○ Train selected model against simulation framework
○ Validate model against production workload
○ Automate analysis through RTA framework
○ Configure RTA* framework to send emails highlighting risk

● 90/10 rule
○ There are always corner cases, don’t be discouraged

● Research took about a quarter

*RTA is an analytics platform built internally

Improved Observability
Self-service tooling based on that used by Performance & Reliability Team

(Macro)

(Micro)

Eliminate Outliers
● Two of these instances are not like the others, two of these just don’t belong**..

** paraphrased

Another helping hand
All the monkeys and gorillas you could want..the Netflix Simian Army

● Automated (unplanned) Terminations
● Security Scans
● Cleanup of unused resources
● Injection of latency and failures
● Terminate an availability zone
● Fail a Region

 ...all opt-in by default

Efficiency & Cost

Freedom

Responsibility

Distribute weekly cost report

Tool Transitions
● (Point) Solutions built out of necessity

○ broad value for long-term care and feeding

● Example: Scryer
○ Predictive autoscaling engine
○ Developed by Edge Platform..migrated to Performance and

Reliability team

Measuring Success
● Reduction in incidents related to specific operational areas/tasks

● Instrument applications to quantify uptake rates

● Talk to your customers...often; solicit critical feedback

● Engineering teams providing resources for tool development/extension

○ vs building point solution w/in team

● Evolve operational best practices program
○ Production Ready

○ Prioritize work to align with “critical” services; maximize leverage

● Create and extend tooling
○ Autoscaling RTA module, Java GC tuning, etc.

● Continue to strengthen Reliability Engineering base

Onwards and upwards

Q&A
● cwatson@netflix.com, @coburnw
● Netflix Open Source Portal

mailto:cwatson@netflix.com
mailto:cwatson@netflix.com
http://netflix.github.io/#repo
http://netflix.github.io/#repo

