
Mapping a service-oriented
architecture

Mapping a service-oriented
architecture

Mapping a service-oriented
architecture

microservices

with Docker
and SDNs

big-data

NoSQL

timeseries
Metallica

Lambda
architecture

Kappa
architecture

machine learning

Mapping your infrastructure

Peter Bourgon
Harmen Bus

David Kaltschmidt
☞

☞

1. Motivation
2. What we want
3. How to build it

Motivation

A dev/ops world

Speed = good

Speed = dangerous

Invariant: 
Complexity is unavoidable

DEAL WITH IT

What we want

Make complexity
understandable

Visual, dynamic, humane

Visual · http://worrydream.com/LadderOfAbstraction/
Dynamic · https://vimeo.com/66085662

Humane · http://worrydream.com/TheHumaneRepresentationOfThoughtTalk

http://worrydream.com/LadderOfAbstraction/
https://vimeo.com/66085662
http://worrydream.com/TheHumaneRepresentationOfThoughtTalk

Visual

Dynamic

Humane

“Let’s stop feeding the machines  
with human blood.”

 –Todd Underwood

Visual = graphical
Dynamic = responsive
Humane = no config

Invariant:
Model as a directed graph

(visual)

Invariant:
An instantaneous, updating view

(dynamic)

Invariant:
No configuration or declaration

(humane)

java

95 ⇆

↘︎ 56 KB/s

neo4j

???

10.14.0.119:30112  
11 KB/s

10.19.91.119:20021 
9 KB/s

paul

-Xms=1024 …  
-Xmx=1024 …

8862

↖︎ 997 KB/s 10.14.0.101:11323  
254 KB/s

10.14.0.119:30112  
331 KB/s

0.0.0.0:7474

0.0.0.0:7474 →
10.14.0.119:30112

TCP

IPv4 330 KB/s

325 KB/s

HTTP 301 KB/s

???

???

HTTP 501 
105/s

ICMP
…

45 B/s

…

How to build it

Information sources

Invariant:
The atom of the data model

is the process (PID)

Process list – `ps`
Programmatically – /proc

/proc/PID
+ complete (ish)

+ reliable
— slow (ish)

(Is there another one?)

pid 1234
process_name java
user paul
max_cpu 101.3
cmd java -Xmx...
foo_bar baz

Communication:
Named pipes
Files on disk

Network

Communication = sockets

Invariant:
Communication occurs via sockets

Socket list – `netstat`, `lsof`
Programmatically – well…

Order of operations:
First: get data associated to some network ID

Later: link network ID to process ID

/proc/net/tcp[6]
· connection-based

+ fast (comparatively)
+ reliable

— just connections

tcp_diag
· connection-based

+ like /proc/net/tcp but faster
— kernel module

— not actually used?

libpcap
· packet-based
+ complete (ish)
+ can be bundled

— slow

ip_conntrack
· connection-based

+ fast
— just connections
— kernel module

netlink – nflog, netfilter
· packet-based

+ fast
+ complete (ish)
~ relatively new

— complex

Span port/port mirroring
· complete!

+ no effect on node
— separate hardware

— breaks data model :(

(Are there more?)

— Everything discussed is Linux
+ Other implementations possible

+ Information can compose

tcp (10.1.1.1 80 172.16.1.2 9010)
send_bytes 1024576
recv_bytes 55128
http_gets 25
http_posts 1
http_200s 20
http_501s 6

process ID – network ID
mapping

tcp_id (10.1.1.1 80 172.16.1.2 9010)
send_bytes 1024576
recv_bytes 55128
http_gets 25
http_posts 1
http_200s 20
http_501s 6

pid 8110
name java
cmd java neo4j -Xmx …
max_cpu 101.5
listen (0.0.0.0 80)

Merge

Add

Max

Invariant:
Observed data must merge 
without losing information

Data that can’t be mapped  
should stay in its origin domain;  

∴ multiple topologies.

Topologies:
PID–PID  

Host–Host
IP–IP

¿MAC–MAC?

Nodes in the {PID, IP, Host} topology
with {IP, TCP, HTTP, …} traffic
{to, from, to&from} port/s {N}

What else can we do?

Monday

Tuesday

Wednesday

Thursday

Δ

Every data point is a time series.
Alerting, anomaly detection…

Conclusion

Complexity is unavoidable

Model as directed graph

An instantaneous, updating view

No configuration or declaration

Process-oriented

Communication occurs over sockets

Data must have a merge strategy

A humane tool

Focus on the facts

Help us understand what we’ve built

“Instead of telling me how your software will solve problems,
show me … a product that is going to join my team as an

awesome team member.”

 –John Allspaw

github.com/weaveworks/scope

Thank you!

What have I missed?
What are your thoughts?

@peterbourgon

