
Andrew Clegg

Signatures, 
Patterns & Trends Timeseries data mining at Etsy



saturdayproject.etsy.com

xanthippew.etsy.com

sewmuchfrippery.etsy.com



lotusleafcreations.etsy.com

metrics

Skyline: 
anomaly detection

Oculus: 
similarity search



craftylemonprints.etsy.com



Kale 1.0: What worked well?



Timeseries similarity search: !

Shape Description 
Alphabet: a lovely hack.

“a”
“b”
“c”
“d”
“e”

1. Map line segments 
to tokens based on 
gradient. 

2. Index tokens with 
Elasticsearch. 

3. Search for similar 
subsequences 
using sloppy 
phrase queries.



Kale 1.0: What proved hard?



Architecture
Languages used: 

Python (Skyline app & workers) 
Ruby (Oculus search app) 
Java (Oculus ES plugin) 
JS (Skyline and Oculus apps)



Anomaly detection

nausicaadistribution.etsy.com



Not every anomaly 
is a point outlier.

And not every point outlier still 
looks like one, if you step back 
and look at more data.



Periodic oscillations 
sometimes appear 
out of nowhere.

Or previously-reliable ones can 
vanish just as suddenly.



Trends change, 
baselines can 
suddenly shift.

Healthy upward growth can 
drop out suddenly, flatten off or 
begin to fall.



Rare, discrete events 
can suddenly become 
more frequent.

Conversely, events you expect 
to see with some regularity can 
become much sparser or 
disappear completely.



And the best bit is…



… it’s usually not even a 
problem.



Kale 2.0, Phase 1: Thyme
❖ Library of algorithms and composable processing steps 

❖ Aims to be memory-efficient and cache-friendly (for Java) 

❖ Platform and infrastructure agnostic 

❖ Supports flexible experimentation and prototyping

Built using ReactiveX framework

Interactive sample 
application and 

developer tutorial



A taste of 
Thyme

Schematic of a pipeline. 
The component parts can be 
assembled in various ways.

raw data split into blocks apply wavelet filter

high 
frequencies

low 
frequencies

sort each blockbuild overlapping 
windows

Generalized 
ESD test

Kolmogorov- 
Smirnov test ☑

⚠



Lessons learnt from Kale 1.0

❖ Keep your architecture simple — especially for OSS releases 

❖ “This is a good fit for this problem” doesn’t always imply 
“Let’s add this new piece to our stack” 

❖ Don’t release a product/platform unless you have a good 
history of using it yourself 

❖ … and no plans to stop



Lessons learnt from Kale 1.0

❖ Anomaly detection is more than just outlier detection 

❖ A one-size-fits-all approach probably won’t fit at all



Lessons learnt from Kale 1.0

❖ Ensemble methods and auto-calibration a good idea 

❖ Timeseries similarity search is feasible after all 

❖ … if you constrain the search space by fingerprinting 

❖ Don’t forget human factors: good UI and workflow



@andrew_clegg

Thank you!
And thanks to everyone who’s contributed: 
Abe Stanway, Avleen Vig, Jeff Kim, Jon 
Cowie, Katherine Daniels, Nishan Subedi 

Follow us for updates: 

https://github.com/etsy 

https://codeascraft.com/ 

@codeascraft
"Thymus citriodorus" by Forest & Kim Starr 

Shared under CC-BY 3.0 license

https://twitter.com/andrew_clegg
https://github.com/etsy
https://codeascraft.com/
https://twitter.com/codeascraft
http://en.wikipedia.org/wiki/Thymus_citriodorus#/media/File:Starr_070906-8846_Thymus_citriodorus.jpg
http://creativecommons.org/licenses/by/3.0

