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Argonne is Home to 5 National User Facilities 

¤ Advanced Photon Source 
¤ Argonne Leadership Computing Facility 
¤ Argonne Tandem Linac Accelerator System 
¤ Center for Nanoscale Materials 
¤ Transportation Research and Analysis Computing 

Center 
¤ Common characteristics 

¥  Scale 
¥ Cost 
¥ Uniqueness 

¥ Wide user base 
 
 



What’s a Leadership Computing Facility? 
•  Open science for the world’s science community 
•  Two centers—ALCF at Argonne and OLCF at Oak Ridge National 

Laboratory 

•  Supported by DOE’s Advanced Scientific Computing Research Program 

•  Two architecturally diverse HPC resources  
•  10-100 times more powerful than systems typically available at other 

computer centers 

•  Primary mission: drive scientific and engineering breakthroughs 
•  Small number of very large projects 

3 



Current Resources 
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Mira – IBM Blue Gene/Q 
¥  49,152 nodes / 786,432 cores 
¥  786 TB of memory 
¥  Peak flop rate: 10 PF 
 

Vesta – IBM Blue Gene/Q 
¥  2,048 nodes / 32,768 cores 
¥  32 TB of memory 
¥  Peak flop rate: 419 TF 

 
Cetus – IBM Blue Gene/Q 
¥  4,096 nodes / 65,536 cores 
¥  64 TB of memory 
¥  Peak flop rate: 836 TF 

 

Cooley – Cray CS system 
¥  126 nodes (each with 2 x Haswell 2.4 GHz 6-core CPUs and 1 x NVIDIA Telsa K80 GPU 
¥  47 TB memory  
¥  Peak flop rate: 223 TF 

 
Storage - Scratch: 28.8 PB raw capacity, 240 GB/s bw (GPFS); Home: 1.8 PB raw capacity; Tape: 16 
PB of archival storage, 15,906 volume tape archive (HPSS) 
 



Leadership Computing Characteristics 
¤ Capability is core to the LCF mission 

¥  Scheduling policy encourages large, long jobs 
¥  Smallest job allowed - 512 nodes (8k cores,  

32k threads) 
¥  Maximum # of jobs at any point in time is 96 
¥  Averages around 200 jobs per day 
¥  Sometimes one job running across full  

system for many hours – 49,152 nodes (786k cores,  
3.1M threads) 

¤  Applications requirements are different 
¥  Fast low-latency communication required 
¥  No jitter for nodes, slowest node == speed for all nodes 
¥  Reproducibility for both performance and results required 
¥  Parallel runtime environment is not fault-tolerant, recovery is typically with 

checkpoint/restart 

¤  Small (relatively) number of jobs and importance of each is integral 
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Mira Job Count by Week 
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In the beginning… 
¤  ALCF founded (in real life) in 2007 
¤  Started from scratch, including building a data center 

¥  No data center on campus capable of supporting power (2MW),  
cooling (>220K CFM air flow), space requirements (6,000 sq ft) 

¤  First large production resource (Intrepid) deployed in 2008/2009 
¥  IBM Blue Gene/P 500 TF, debut at #3 on Top 500 List 

¤ Major challenges typical of these tightly coupled, complex, first of 
their kind, extreme scale supercomputers 
¥  Intermittent incorrect answers - replacement of almost all nodes, twice 
¥  Power supplies popping - redesign and replacement of all BPMs 

¤  Priorities 
¥  Hire staff 
¥  Commission data center 
¥  Deploy hardware 
¥  Get correct answers and stable enough systems 
¥  Get users on and doing science 
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DOE reporting requirements added 
¤  Summer of 2009, DOE asked for Operational Assessment Report (OAR) 

¥  DOE’s report to US Office of Management & Budget 
¥  Requirement to report on availability, utilization, MTTI/MTTF, etc. 

¤ No explicit tracking of necessary data 
¤  Blue Gene (BG) control system auto-gathers lots of data 

¥  Job data – multiple records for every job 
¥  Parts inventory and history for every HW component in system 
¥  RAS events – all info, warn, fatal 
¥  Environmental data from all components – voltage, current, temp, etc. 

¤  Plus specialized and standard system logs 
¤  Too much data from many sources 

¥  ~100M records/year for BG database alone 
¥  Difficult to manually calculate required  

metric actuals for DOE OAR 
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Automated Failure Analysis (AFA) Project 
¤ Goal: Gather data, build list of system interrupts and job failures, 

categorize as User, System, Unknown and by component to assist 
with calculating number for OAR 

¤ Data sources:  
¥  Blue Gene control system database  
¥  GPFS logs 
¥  Resource manager logs 
¥  MMCS (including boot) logs 
¥  Job stdout/stderr files 

¤  Series of programs run by a shell script 
¥  Perl, Python, SQL, bash 

¤  Analyzed all failed jobs and system failures 
¥  Correlated jobs to system SW/HW failures using time, messages, and 

location matching 
¥  Categorized all system interrupts by component that failed 
¥  Categorized all job failures as User, System, or Unknown 

¤  Run once for full reporting period, dumped out CSV files 
¤  Final step was to manually process CSV files using MS Excel 
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First OAR Report 
¤ We got the necessary numbers 

¥  Overall Availability: 92.1% 
¥  Scheduled Availability: 97.5% 
¥  Utilization: 65.3% 
¥  5 Major outages noted 
¥  36.3% jobs failed 
¥  10.4% failed marked System 

¤  But there were issues 
¥  Single point in time, output  

from process not fed back  
into data 

¥  AFA good start, not complete  
story 

¥  Manual analysis plagued by  
errors, not consistent, built  
from staff memory of long 
past events 
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OARTool and OARdb Project 
¤ Goal: Provide central repository for availability/interrupt data and 

tools for data manipulation, maintenance, and analysis 
¤ OARdb database 

¥  Output of AFA captured in DB2 database as Availability Event and Job 
Interrupt tables  

¤  Tools for managing OARdb records and calculating results 
¥  CLI and GUI for viewing, entering, editing the events 
¥  Calculate and store weekly MTTI, MTTF, Overall Availability, Scheduled 

Availability (replaced manual analysis) 
¥  Python based 

¤  Added Weekly Root Cause Analysis 
¥  Weekly multi-hour meeting with Ops staff 
¥  Root cause analysis of all System and Unknown failures 
¥  Availability and Interrupt events annotated with results, re-categorized as 

User or System 
¥  Weekly OAR Master builds file of updated data to upload to OARdb 
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Mean Time To Interrupt Report Example 
¤  Three report areas 

¥  Hardware only 
¥  All “System” failures 
¥  Component failure count 

¤  Report headers 
¥  Resource 
¥  Type of records 

¤ Column headers 
¥  MTTI: Mean Time to Interrupt, 

expressed in seconds and days 
¥  Events: number of interrupt 

events (job failures sharing 
same root cause) 

¥  Job Total: Total number of 
impacted jobs 

¥  Job Mean: Mean of jobs 
impacted per event 
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Impact of Improved Process and OARTool 
¤ More accurate OAR results 

¥  Reflected consistent calculations and consistently applied business policy 
¥  Information on availability events gathered NLT 1 week from the event 
¥  Majority of Unknowns now characterized properly as User 

¤ However, more interesting benefits began to emerge 
¥  Level of understanding of the very complex system increased across the 

Ops Team 
¥  Weekly immersion in job and system failures raised awareness and 

facilitated making connections between failures 
¥  Weekly summary of major component failures led to swat teams focused 

on underlying causes of system instability 

¤  Regular root cause analysis implemented for scheduling as well 
¥  Increased understanding of scheduling complexities across whole facility 
¥  Modifications to reduce queue wait time 
¥  Able to track and see impact of changes 
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Examples of Success Stories from the Process  
¤  Large quantities of jobs failing due to boot failures 

¥  9.1% of boots failing 
¥  Swat team deployed – purchased and deployed NAS, reconfigured central 

database 
¥  Boot failures went to 0, full machine boot went from 15 mins to 5 mins 
¥  100x improvement in database performance and many other improvements 

¤ Component fault report began showing GPFS as top contributor by 
large margin (16 out of 32 events) 
¥  Swat team deployed – network, gpfs, and service node cfg changes 
¥  GPFS dropped to a minor contributor (2 of 16 events) 
¥  System failure events cut in half, MTTF increased by 10% 

¤  Large number of jobs failing due to failed I/O 
¥  Root cause analysis led to correlating the failures with another user’s 

automated job submission script 
¥  Educated user, script fixed, I/O failures disappeared 
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Intrepid MTTI and MTTF Over Lifetime 

¤ MTTI is time to any outage 
¥  Failures 
¥  Scheduled outages 
¥  Max possible ~336 hrs 

¤   MTTF is time to a  
system failure 
¥  Hardware & Software 

¤  Root Cause Analysis  
implemented 2010 
¥  2.5x improvement  

to MTTF 

¤  Final year 
¥  Data Center  

plagued by power  
issues 
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Intrepid Availability & Utilization Over Lifetime 

¤ Overall Availability 
¥  92.1% in 2009 to  

95.9% in 2012 

¤  Scheduled Availability 
¥  97.5% in 2009 to  

98.5% in 2012 

¤ Utilization 
¥  78.1% in 2009 to 
¥  87.6% in 2012 
¥  Anything over 80% is 

excellent 
¥  Attributed to root  

cause analysis for both  
job failures (and accompanying education of users) and scheduling 
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Weekly Root Cause Analysis Valuable but… 
¤ Weekly Root Cause Analysis meeting were painful and time 

consuming 
¥  4 hours or more each week 
¥  5 or more people involved 
¥  JFA Master made all edits – not scalable 
¥  No view into what others were discovering during meeting 

¤ New systems to be deployed in new data center  
¥  Next generation BG/Q system (Mira) with all new infrastructure 
¥  New RAS events with different meanings 
¥  Required porting of codes and tools 
¥  Took advantage to address biggest issues with the process 

¤  Alacrify project to improve AFA and add QA and testing 
¤  Storm project to improve Weekly Root Cause Analysis process 

¥  Front end for managing root cause analysis 
¥  Drag and drop jobs from one grouping to another 
¥  Multi-person editing and close to real-time viewing of changes 
¥  Tagging – text and colors from automated analysis of failures 
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Alacrify Project 
¤ Goal: Port to new systems and infrastructure, improve portability, 

add testing to Automated Failure Analysis code 
¤  Rewrote and modularized AFA code 

¥  Converted to python libraries 
¤  Added libraries with business logic for calculating metrics 
¤  Improved QA 

¥  Heavily instrumented with unit tests 
¤  Jenkins deployed to provide nightly testing 

¥  Unit tests for Alacrify libraries 
¥  Verification tests for availability events and job interrupts 
¥  Many others 
¥  Jenkins master has slave systems with special access to various 

restricted networks 
¤  Implemented separate complete development and release 

environments 
¤  Integrated with ALCF Data Warehouse 
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Storm Project 
¤  Goal: Improve weekly Root Failure Analysis process  
¤  Storm server – VM on a standard IT server 

¥  Apache 
¥  WSGI (Web Server Gateway Interface) application 
¥  django app (python) 

¤   Storm provides weekly Job Failure Analysis (JFA) interface 
¥  Java script doing AJAX calls  
¥  Script accesses django app and requests data  
¥  Uses RabbitMQ to manage message queues 

¤  Close to real-time updates during JFA (every 10s) 
¥  Ops staff log into JFA page 
¥  Individual RabbitMQ message queues auto-generated on login 
¥  When staff makes a change, the webserver writes to the db and sends rmq 

messages to all message queues 
¥  In separate threads for each person, Ajax polls their queue to see if they have 

a message, then takes the message and calls a java script to update the 
screen, removing the message from the rmq 

¤  Many cool features including job, power, temp real-time graphs 
¤  Reduced weekly meeting time to around an hour instead of over 4 
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Storm JFA Page 
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Storm JFA Examples 
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Current Process 
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Impact of this process and tools on Mira 
¤ Mira is a 20% larger system 

¥  By number of nodes 
¥  Even larger by component counts 

¤  Even with that, it is very stable 
¤ MTTI/MTTF started where 

Intrepid was in year 2 
¥  2nd year of Mira exceeds 

Intrepid’s best MTTF by 
20% 

¤ Overall and Scheduled Availability 
are already over Intrepid’s best 
¥  96.4% and 99.4% 
¥  Even with multiple power outages 

¤ Utilization started at 79.4% and 
is now at 88.1% 
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Future Work 
¤  Porting of tools/codes/process to non-Blue Gene systems 

¥  Current tools are Blue Gene centric, not really usable by non-BG sites 
¥  Two new ALCF systems just announced for 2016 and 2018 

¡ Theta – Intel/Cray XC-40 with 2nd Gen Intel Xeon Phi (Knights Landing – KNL) 
¡ Aurora – Intel/Cray Shasta with 3rd Gen Intel Xeon Phi (Knights Hill – KNH) 

¥  Porting of OAR and FA tools, codes, and process will be required 
¥  Rework to remove Blue Gene-isms - potential for public release 

¤  Improve automated failure analysis to add additional correlation 
capability, incorporate additional data sources 
¥  Vast majority of failures categorized as Unknown are really User 

¤  Add capability to easily bring User jobs back into root cause analysis 
process 
¥  Ability to search and automatically pull in failures records incorrectly 

categorized as User 

¤  Potentially replace WSGI with Websockets 
¥  Would greatly simplify Storm 
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Summary 
¤ Original driver for weekly root cause analysis was to meet DOE 

requirements for reporting metrics 
¥  OAR results are now accurate, consistently generated, and retained in a 

database 

¤  True value lay in deep and wide root cause analysis of every job 
failure and every availability event 
¥  Data gathered on real cause of failures over time 
¥  Focused team on underlying causes of system instability 
¥  Used to drive improvement and upgrade planning 
¥  Contributed to improved MTTI/MTTF, Availability, and Utilization 
¥  Insight into users behaviors used to educate users and improve schedule 
¥  Increased Ops knowledge and expertise of complex systems 

¤ Direct contributor to stabilizing Mira so quickly 
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Thank you 
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