
Continuous Improvement Using Comprehensive
Root Cause Analysis

Susan	
 Coghlan	

May 14, 2015

Argonne is Home to 5 National User Facilities

¤ Advanced Photon Source
¤ Argonne Leadership Computing Facility
¤ Argonne Tandem Linac Accelerator System
¤ Center for Nanoscale Materials
¤ Transportation Research and Analysis Computing

Center
¤ Common characteristics

¥  Scale
¥ Cost
¥ Uniqueness

¥ Wide user base

What’s a Leadership Computing Facility?
•  Open science for the world’s science community
•  Two centers—ALCF at Argonne and OLCF at Oak Ridge National

Laboratory

•  Supported by DOE’s Advanced Scientific Computing Research Program

•  Two architecturally diverse HPC resources
•  10-100 times more powerful than systems typically available at other

computer centers

•  Primary mission: drive scientific and engineering breakthroughs
•  Small number of very large projects

3

Current Resources

4

Mira – IBM Blue Gene/Q
¥  49,152 nodes / 786,432 cores
¥  786 TB of memory
¥  Peak flop rate: 10 PF

Vesta – IBM Blue Gene/Q
¥  2,048 nodes / 32,768 cores
¥  32 TB of memory
¥  Peak flop rate: 419 TF

Cetus – IBM Blue Gene/Q
¥  4,096 nodes / 65,536 cores
¥  64 TB of memory
¥  Peak flop rate: 836 TF

Cooley – Cray CS system
¥  126 nodes (each with 2 x Haswell 2.4 GHz 6-core CPUs and 1 x NVIDIA Telsa K80 GPU
¥  47 TB memory
¥  Peak flop rate: 223 TF

Storage - Scratch: 28.8 PB raw capacity, 240 GB/s bw (GPFS); Home: 1.8 PB raw capacity; Tape: 16
PB of archival storage, 15,906 volume tape archive (HPSS)

Leadership Computing Characteristics
¤ Capability is core to the LCF mission

¥  Scheduling policy encourages large, long jobs
¥  Smallest job allowed - 512 nodes (8k cores,

32k threads)
¥  Maximum # of jobs at any point in time is 96
¥  Averages around 200 jobs per day
¥  Sometimes one job running across full

system for many hours – 49,152 nodes (786k cores,
3.1M threads)

¤  Applications requirements are different
¥  Fast low-latency communication required
¥  No jitter for nodes, slowest node == speed for all nodes
¥  Reproducibility for both performance and results required
¥  Parallel runtime environment is not fault-tolerant, recovery is typically with

checkpoint/restart

¤  Small (relatively) number of jobs and importance of each is integral

5

Mira Job Count by Week

6

0"

500"

1000"

1500"

2000"

2500"

3000"

4/9
/13
"

5/9
/13
"

6/9
/13
"

7/9
/13
"

8/9
/13
"

9/9
/13
"

10
/9/
13
"

11
/9/
13
"

12
/9/
13
"

1/9
/14
"

2/9
/14
"

3/9
/14
"

4/9
/14
"

5/9
/14
"

6/9
/14
"

7/9
/14
"

8/9
/14
"

9/9
/14
"

10
/9/
14
"

11
/9/
14
"

12
/9/
14
"

1/9
/15
"

2/9
/15
"

3/9
/15
"

4/9
/15
"

Jo
b$
Co

un
t$

MiraJobCountbyWeek$

In the beginning…
¤  ALCF founded (in real life) in 2007
¤  Started from scratch, including building a data center

¥  No data center on campus capable of supporting power (2MW),
cooling (>220K CFM air flow), space requirements (6,000 sq ft)

¤  First large production resource (Intrepid) deployed in 2008/2009
¥  IBM Blue Gene/P 500 TF, debut at #3 on Top 500 List

¤ Major challenges typical of these tightly coupled, complex, first of
their kind, extreme scale supercomputers
¥  Intermittent incorrect answers - replacement of almost all nodes, twice
¥  Power supplies popping - redesign and replacement of all BPMs

¤  Priorities
¥  Hire staff
¥  Commission data center
¥  Deploy hardware
¥  Get correct answers and stable enough systems
¥  Get users on and doing science

7

DOE reporting requirements added
¤  Summer of 2009, DOE asked for Operational Assessment Report (OAR)

¥  DOE’s report to US Office of Management & Budget
¥  Requirement to report on availability, utilization, MTTI/MTTF, etc.

¤ No explicit tracking of necessary data
¤  Blue Gene (BG) control system auto-gathers lots of data

¥  Job data – multiple records for every job
¥  Parts inventory and history for every HW component in system
¥  RAS events – all info, warn, fatal
¥  Environmental data from all components – voltage, current, temp, etc.

¤  Plus specialized and standard system logs
¤  Too much data from many sources

¥  ~100M records/year for BG database alone
¥  Difficult to manually calculate required

metric actuals for DOE OAR

8

Automated Failure Analysis (AFA) Project
¤ Goal: Gather data, build list of system interrupts and job failures,

categorize as User, System, Unknown and by component to assist
with calculating number for OAR

¤ Data sources:
¥  Blue Gene control system database
¥  GPFS logs
¥  Resource manager logs
¥  MMCS (including boot) logs
¥  Job stdout/stderr files

¤  Series of programs run by a shell script
¥  Perl, Python, SQL, bash

¤  Analyzed all failed jobs and system failures
¥  Correlated jobs to system SW/HW failures using time, messages, and

location matching
¥  Categorized all system interrupts by component that failed
¥  Categorized all job failures as User, System, or Unknown

¤  Run once for full reporting period, dumped out CSV files
¤  Final step was to manually process CSV files using MS Excel

9

First OAR Report
¤ We got the necessary numbers

¥  Overall Availability: 92.1%
¥  Scheduled Availability: 97.5%
¥  Utilization: 65.3%
¥  5 Major outages noted
¥  36.3% jobs failed
¥  10.4% failed marked System

¤  But there were issues
¥  Single point in time, output

from process not fed back
into data

¥  AFA good start, not complete
story

¥  Manual analysis plagued by
errors, not consistent, built
from staff memory of long
past events

10

!

0.00%$

5.00%$

10.00%$

15.00%$

20.00%$

25.00%$

30.00%$

35.00%$

0$

2000$

4000$

6000$

8000$

10000$

12000$

14000$

16000$

Us
er:
$$jo
b$o
ve
r$5
me
$lim

it$

Us
er:
$$jo
b$d
ele
ted
$w
hil
e$q
ue
ue
d$

Us
er:
$$jo
b$d
ele
ted
$by
$us
er$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGS
EG
V$

Us
er:
$$p
roc
ess
$ex
ite
d$u
ne
xp
ec
ted
ly$
(by
$ca
llin
g$e
xit
()$o
r$M
PI_
Ab
ort
())
$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGT
ER
M$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGI
OT
$

Sy
ste
m:
$$N
O$T
AS
KS
$RU
N$W
$un
kn
ow
n$r
ea
so
n$

Sy
ste
m:
$$N
O$T
AS
KS
$RU
N$W
$sc
rip
t$fa
ilu
re$

Sy
ste
m:
$$N
O$T
AS
KS
$RU
N$W
$$st
art
up
$fa
ilu
re$
(<$
40
$se
c)$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGS
TK
FLT
$

Sy
ste
m:
$$e
xe
cu
tab
le$
loa
d$f
ail
ed
$be
ca
us
e$o
f$s
yst
em
$er
ror
$

Us
er:
$$e
xe
cu
tab
le$
loa
d$f
ail
ed
$be
ca
us
e$o
f$u
ser
$er
ror
$(b
ad
$ex
ec
uta
ble
,$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGB
US
$

Sy
ste
m:
$$ta
sk$
kil
led
$by
$sy
ste
m$
(ad
mi
nis
tra
tor
)$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGT
RA
P$

Sy
ste
m:
$$ta
sk$
thr
ea
d$l
os
t$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGI
LL$

Sy
ste
m:
$$co
ntr
ol$
me
ssa
ge
$co
mm

un
ica
5o
n$e
rro
r$

Sy
ste
m:
$$M
MC
S$r
est
art
ed
.$$t
ask
$ki
lle
d.$

Us
er:
$$ta
sk$
kil
led
$w
ith
$sig
na
l$S
IGK
ILL
$

Us
er:
$$B
G_
SIZ
E$b
igg
er$
tha
n$s
ize
$of
$pa
r5
5o
n$

Fault&Analysis&&
August&1st,&2008&2&July&31st,&2009&

Occurrences$

Percent$

OARTool and OARdb Project
¤ Goal: Provide central repository for availability/interrupt data and

tools for data manipulation, maintenance, and analysis
¤ OARdb database

¥  Output of AFA captured in DB2 database as Availability Event and Job
Interrupt tables

¤  Tools for managing OARdb records and calculating results
¥  CLI and GUI for viewing, entering, editing the events
¥  Calculate and store weekly MTTI, MTTF, Overall Availability, Scheduled

Availability (replaced manual analysis)
¥  Python based

¤  Added Weekly Root Cause Analysis
¥  Weekly multi-hour meeting with Ops staff
¥  Root cause analysis of all System and Unknown failures
¥  Availability and Interrupt events annotated with results, re-categorized as

User or System
¥  Weekly OAR Master builds file of updated data to upload to OARdb

11

Mean Time To Interrupt Report Example
¤  Three report areas

¥  Hardware only
¥  All “System” failures
¥  Component failure count

¤  Report headers
¥  Resource
¥  Type of records

¤ Column headers
¥  MTTI: Mean Time to Interrupt,

expressed in seconds and days
¥  Events: number of interrupt

events (job failures sharing
same root cause)

¥  Job Total: Total number of
impacted jobs

¥  Job Mean: Mean of jobs
impacted per event

12

Impact of Improved Process and OARTool
¤ More accurate OAR results

¥  Reflected consistent calculations and consistently applied business policy
¥  Information on availability events gathered NLT 1 week from the event
¥  Majority of Unknowns now characterized properly as User

¤ However, more interesting benefits began to emerge
¥  Level of understanding of the very complex system increased across the

Ops Team
¥  Weekly immersion in job and system failures raised awareness and

facilitated making connections between failures
¥  Weekly summary of major component failures led to swat teams focused

on underlying causes of system instability

¤  Regular root cause analysis implemented for scheduling as well
¥  Increased understanding of scheduling complexities across whole facility
¥  Modifications to reduce queue wait time
¥  Able to track and see impact of changes

13

Examples of Success Stories from the Process
¤  Large quantities of jobs failing due to boot failures

¥  9.1% of boots failing
¥  Swat team deployed – purchased and deployed NAS, reconfigured central

database
¥  Boot failures went to 0, full machine boot went from 15 mins to 5 mins
¥  100x improvement in database performance and many other improvements

¤ Component fault report began showing GPFS as top contributor by
large margin (16 out of 32 events)
¥  Swat team deployed – network, gpfs, and service node cfg changes
¥  GPFS dropped to a minor contributor (2 of 16 events)
¥  System failure events cut in half, MTTF increased by 10%

¤  Large number of jobs failing due to failed I/O
¥  Root cause analysis led to correlating the failures with another user’s

automated job submission script
¥  Educated user, script fixed, I/O failures disappeared

14

Intrepid MTTI and MTTF Over Lifetime

¤ MTTI is time to any outage
¥  Failures
¥  Scheduled outages
¥  Max possible ~336 hrs

¤  MTTF is time to a
system failure
¥  Hardware & Software

¤  Root Cause Analysis
implemented 2010
¥  2.5x improvement

to MTTF

¤  Final year
¥  Data Center

plagued by power
issues

15

0"

100"

200"

300"

400"

500"

600"

2008" 2009" 2010" 2011" 2012" 2013"

Ho
ur
s&t
o&
In
te
rr
up

t&

Intrepid&MTTI&&&MTTF&

MTTI" MTTF"

Intrepid Availability & Utilization Over Lifetime

¤ Overall Availability
¥  92.1% in 2009 to

95.9% in 2012

¤  Scheduled Availability
¥  97.5% in 2009 to

98.5% in 2012

¤ Utilization
¥  78.1% in 2009 to
¥  87.6% in 2012
¥  Anything over 80% is

excellent
¥  Attributed to root

cause analysis for both
job failures (and accompanying education of users) and scheduling

16

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

2008" 2009" 2010" 2011" 2012" 2013"

Pe
rc
en

t'

Intrepid'Metrics'

Overall"Availability"(%)" Scheduled"Availability"(%)" U@liza@on"(%)"

Weekly Root Cause Analysis Valuable but…
¤ Weekly Root Cause Analysis meeting were painful and time

consuming
¥  4 hours or more each week
¥  5 or more people involved
¥  JFA Master made all edits – not scalable
¥  No view into what others were discovering during meeting

¤ New systems to be deployed in new data center
¥  Next generation BG/Q system (Mira) with all new infrastructure
¥  New RAS events with different meanings
¥  Required porting of codes and tools
¥  Took advantage to address biggest issues with the process

¤  Alacrify project to improve AFA and add QA and testing
¤  Storm project to improve Weekly Root Cause Analysis process

¥  Front end for managing root cause analysis
¥  Drag and drop jobs from one grouping to another
¥  Multi-person editing and close to real-time viewing of changes
¥  Tagging – text and colors from automated analysis of failures

17

Alacrify Project
¤ Goal: Port to new systems and infrastructure, improve portability,

add testing to Automated Failure Analysis code
¤  Rewrote and modularized AFA code

¥  Converted to python libraries
¤  Added libraries with business logic for calculating metrics
¤  Improved QA

¥  Heavily instrumented with unit tests
¤  Jenkins deployed to provide nightly testing

¥  Unit tests for Alacrify libraries
¥  Verification tests for availability events and job interrupts
¥  Many others
¥  Jenkins master has slave systems with special access to various

restricted networks
¤  Implemented separate complete development and release

environments
¤  Integrated with ALCF Data Warehouse

18

Storm Project
¤  Goal: Improve weekly Root Failure Analysis process
¤  Storm server – VM on a standard IT server

¥  Apache
¥  WSGI (Web Server Gateway Interface) application
¥  django app (python)

¤  Storm provides weekly Job Failure Analysis (JFA) interface
¥  Java script doing AJAX calls
¥  Script accesses django app and requests data
¥  Uses RabbitMQ to manage message queues

¤  Close to real-time updates during JFA (every 10s)
¥  Ops staff log into JFA page
¥  Individual RabbitMQ message queues auto-generated on login
¥  When staff makes a change, the webserver writes to the db and sends rmq

messages to all message queues
¥  In separate threads for each person, Ajax polls their queue to see if they have

a message, then takes the message and calls a java script to update the
screen, removing the message from the rmq

¤  Many cool features including job, power, temp real-time graphs
¤  Reduced weekly meeting time to around an hour instead of over 4

19

Storm JFA Page

20

Storm JFA Examples

21

Current Process

22

OARdb/OARTool	

Storm/JFA	
 Mee:ng	

Alacrify	

Impact of this process and tools on Mira
¤ Mira is a 20% larger system

¥  By number of nodes
¥  Even larger by component counts

¤  Even with that, it is very stable
¤ MTTI/MTTF started where

Intrepid was in year 2
¥  2nd year of Mira exceeds

Intrepid’s best MTTF by
20%

¤ Overall and Scheduled Availability
are already over Intrepid’s best
¥  96.4% and 99.4%
¥  Even with multiple power outages

¤ Utilization started at 79.4% and
is now at 88.1%

23

0"

100"

200"

300"

400"

500"

600"

700"

2013" 2014"

Ho
ur
s&t
o&
In
te
rr
up

t&

Mira&MTTI&&&MTTF&

MTTI" MTTF"

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

2013" 2014" 2015"

Mira%Metrics%

Overall"Availability"(%)" Scheduled"Availability"(%)" U@liza@on"(%)"

Future Work
¤  Porting of tools/codes/process to non-Blue Gene systems

¥  Current tools are Blue Gene centric, not really usable by non-BG sites
¥  Two new ALCF systems just announced for 2016 and 2018

¡ Theta – Intel/Cray XC-40 with 2nd Gen Intel Xeon Phi (Knights Landing – KNL)
¡ Aurora – Intel/Cray Shasta with 3rd Gen Intel Xeon Phi (Knights Hill – KNH)

¥  Porting of OAR and FA tools, codes, and process will be required
¥  Rework to remove Blue Gene-isms - potential for public release

¤  Improve automated failure analysis to add additional correlation
capability, incorporate additional data sources
¥  Vast majority of failures categorized as Unknown are really User

¤  Add capability to easily bring User jobs back into root cause analysis
process
¥  Ability to search and automatically pull in failures records incorrectly

categorized as User

¤  Potentially replace WSGI with Websockets
¥  Would greatly simplify Storm

24

Summary
¤ Original driver for weekly root cause analysis was to meet DOE

requirements for reporting metrics
¥  OAR results are now accurate, consistently generated, and retained in a

database

¤  True value lay in deep and wide root cause analysis of every job
failure and every availability event
¥  Data gathered on real cause of failures over time
¥  Focused team on underlying causes of system instability
¥  Used to drive improvement and upgrade planning
¥  Contributed to improved MTTI/MTTF, Availability, and Utilization
¥  Insight into users behaviors used to educate users and improve schedule
¥  Increased Ops knowledge and expertise of complex systems

¤ Direct contributor to stabilizing Mira so quickly

25

Credits
¤ Work presented today was developed over the past 7 years by a lot

of people
¤  Automated Failure Analysis Project

¥  Primaries: Brian Toonen and Andrew Cherry

¤ OARdb and OARTool Project
¥  Primaries: Cheetah Goletz and Brian Toonen

¤  Storm Project
¥  Primaries: Eric Pershey and Nick Anderson

¤  Alacrify Project
¥  Primaries: Nick Anderson and Eric Pershey

¤  Along with everyone who has worked on
the ALCF Operations Team

26

Thank you

27

