
DevOps at Canonical

SREcon15 Europe - Tom Haddon

Managing service orchestration with Juju and Mojo

About Me

● At Canonical for 8+ years
● Started as the first member of what

became our DevOps team
● Currently manage a squad of 6 SREs

What this talk is about

● Brief history of DevOps at Canonical
● What we’re doing now in DevOps
● Intro to Juju & Mojo

Services We Run For Canonical

● 13 development teams
○ 80 developers
○ Supported by 6 SREs

● 240 distinct services
● IT Services for Canonical and Ubuntu

Community

Deployment Tools/CM/Orchestration

For new deployments:

2007 2008 2009 2010 2011 2012 2013 2014

deploymgr for bare metal deployments

2007 – 2012

ec2deploy for scaling out
some services into AWS

2008 – 2010

Puppet on bare
metal

2010 – 2012

Juju, MAAS &
OpenStack, AWS

2012 – 2014

Issues We Were Seeing

● Differences between tools developers and
SREs using to deploy

● Lack of developer visibility into problems
with deployments

● Differences between staging and
production services

● Overloaded SREs & poor SRE/developer
relations

Where Are We At Today?

Juju & Mojo
(& MAAS, OpenStack, AWS, etc.)

Juju

● Tool allowing modelling of services
● Charms encapsulate service definitions

○ Reusability/shared fixes
● Multiple substrates

○ Baremetal
■ x86, Power, ARM

○ Cloud
■ Private or public clouds (geo-specific services)

Mojo

● Layer on top of Juju providing structure for
deployments

● Started life as a CI tool
● As of 2015 also doing full service

deployments, service upgrades and scaling
of services

Juju

juju deploy apache2 --num-units 2

juju deploy content-fetcher

juju deploy nrpe

juju set apache2 servername=mojo.canonical.com enable_modules=ssl
nagios_check_http_params=...

./build-and-upload-content.sh

juju add-relation apache2 content-fetcher

juju add-relation apache2 nrpe

nova floating-ip-associate <server1> <address1>

nova floating-ip-associate <server2> <address2>

Mojo

mojo run

Live Demo

Kill mojo.canonical.com environment
Re-deploy from scratch using Mojo

Mojo: specifications & manifests

● Specification for each service
● Specification is a VCS branch

○ can have multiple services in one branch
● Manifest files define what “mojo run” will

do
○ deploy ops-ready service
○ verify environment status
○ perform other operations (service upgrade, scaling)

We need the markdown package to be able to generate the docs for Mojo

builddeps packages=make,markdown

Run the collect step

collect

Run the build step

build

Pull in any secrets - this is only used in the production stage

secrets

Deploy services only

deploy config=services local=services-secrets delay=0

Copy our built resources to the instances

script config=upload-built-content

And now deploy relations as well

deploy config=relations

Run verify steps

include config=manifest-verify

Run post deploy steps

script config=post-deploy

Mojo: phases

● Phases are specific steps within a manifest
○ builddeps
○ collect
○ build

■ inside LXC with no network access
○ script
○ deploy
○ verify

We need the markdown package to be able to generate the docs for Mojo

builddeps packages=make,markdown

Run the collect step

collect

Run the build step

build

Pull in any secrets - this is only used in the production stage

secrets

Deploy services only

deploy config=services local=services-secrets delay=0

Copy our built resources to the instances

script config=upload-built-content

And now deploy relations as well

deploy config=relations

Run verify steps

include config=manifest-verify

Run post deploy steps

script config=post-deploy

#!/bin/bash

Script to generate docs from Mojo source tree

set -e

set -u

cd ${MOJO_BUILD_DIR}/mojo

make generate-docs

tar cvpf ${MOJO_LOCAL_DIR}/mojo.tar --directory=docs/www .

if [${MOJO_STAGE##*/} != "production"]; then

We don't deploy landscape in non-production environments, but we need an

dummy secrets file

echo "mojo-how-to:

services:

 nrpe:

 charm: nrpe-external-master" > ${MOJO_LOCAL_DIR}/services-secrets

fi

Mojo: secrets

● Secrets kept outside of the specification so
it can be shared widely

● Secrets copied into working directory
during “mojo run” to be used by Mojo

We need the markdown package to be able to generate the docs for Mojo

builddeps packages=make,markdown

Run the collect step

collect

Run the build step

build

Pull in any secrets - this is only used in the production stage

secrets

Deploy services only

deploy config=services local=services-secrets delay=0

Copy our built resources to the instances

script config=upload-built-content

And now deploy relations as well

deploy config=relations

Run verify steps

include config=manifest-verify

Run post deploy steps

script config=post-deploy

Mojo: stages

● Stages define differences between how to
deploy the same service in different
environments e.g:
○ numbers of units
○ instance constraints (“mem=4G”)
○ ops services for production

● Example:
○ export MOJO_STAGE=mojo-how-to/production && mojo run

We need the markdown package to be able to generate the docs for Mojo

builddeps packages=make,markdown

Run the collect step

collect

Run the build step

build

Pull in any secrets - this is only used in the production stage

secrets

Deploy services only

deploy config=services local=services-secrets delay=0

Copy our built resources to the instances

script config=upload-built-content

And now deploy relations as well

deploy config=relations

Run verify steps

include config=manifest-verify

Run post deploy steps

script config=post-deploy

--- mojo-how-to/devel/services 2015-05-07 15:01:55.434547845 +0100

+++ mojo-how-to/production/services 2015-05-07 15:01:39.194472327 +0100

@@ -4,17 +4,27 @@

 apache2:

 charm: apache2

 expose: true

- num_units: 1

+ num_units: 2

 options:

- servername: mojo-how-to.example.com

+ servername: mojo.canonical.com

 enable_modules: "ssl"

--- mojo-how-to/devel/services 2015-05-07 15:01:55.434547845 +0100

+++ mojo-how-to/production/services 2015-05-07 15:01:39.194472327 +0100

 enable_modules: "ssl"

- nagios_check_http_params: "-I 127.0.0.1 -H mojo-how-to-example.com -e '200' -s 'Mojo'"

- vhost_http_template: 'include-base64://{{spec_dir}}/{{stage}}/../configs/mojo-how-to-
vhost-http.template'

- ssl_cert: SELFSIGNED

+ nagios_check_http_params: -I 127.0.0.1 -H mojo.canonical.com -S -e '200' -s 'Mojo'

+ vhost_http_template: 'include-base64://{{spec_dir}}/{{stage}}/../configs/mojo-how-to-
production-vhost-http.template'

+ vhost_https_template: 'include-base64://{{spec_dir}}/{{stage}}/../configs/mojo-how-to-
production-vhost-https.template'

+ ssl_key: include-base64://{{local_dir}}/mojo.canonical.com.key

+ ssl_keylocation: mojo.canonical.com.key

+ ssl_cert: include-base64://{{local_dir}}/mojo.canonical.com.crt

+ ssl_certlocation: mojo.canonical.com.crt

+ ssl_chain: include-base64://{{local_dir}}/ssl_chain.crt

+ ssl_chainlocation: ssl_chain.crt

--- mojo-how-to/devel/services 2015-05-07 15:01:55.434547845 +0100

+++ mojo-how-to/production/services 2015-05-07 15:01:39.194472327 +0100

 content-fetcher:

 charm: content-fetcher

 options:

 archive_location: file:///home/ubuntu/mojo.tar

 dest_dir: /srv/mojo

+ landscape:

+ charm: landscape-client

 nrpe:

 charm: nrpe-external-master

+ ksplice:

+ charm: ksplice

What Have I Just Seen?

● You can run this yourself against any Juju
environment

● Repeatable network-isolated builds
● “Stages” for different versions of services
● Secrets handling
● Scales up to much more complex services

○ www.ubuntu.com/certification

DevOps at Canonical

● Mojo
○ CI env driven by jenkins
○ Development: local provider, AWS, company internal cloud
○ Staging and production: production internal cloud, MAAS, AWS, etc.

● Developers can run staging (and some
production) services themselves in our
production cloud
○ SREs run service and receive alerts or devs run service and receive

alerts

DevOps at Canonical (continued…)

● Read-only access to production services
○ User accounts via our LDAP
○ Apparmor profile to restrict access as role account

● Push-button/triggered deployments
○ For most fixes
○ Deploy from a blessed branch, gated on CI

The Good

● Repeatable service deployments and updates
○ Devs and SREs using same deployment tools
○ Shorten feedback loop for developers
○ Full stack deployment for developers

● Speed of bringing up new services vastly increased
● Scaling out and back in is trivial

○ www.ubuntu.com at release time
○ Prodstack nova-compute

The Good (continued…)

● Quick adoption by developers
○ Had to add compute capacity to our production

OpenStack instance twice in first three months of
“DevOps solution”

● DevOps ticket queue under control

The Bad

● New tools for developers and SREs to learn
● Writing good Juju charms and Mojo specs is

the hard part
● Some parts of our infrastructure still not

self-service
○ Firewall
○ DNS
○ SSL certs

The Future

● Ongoing improvements for Mojo and Juju
● Better infrastructure and tools around our

deployment story
○ Provide monitoring & trending services
○ Better surfacing of problems with services

● Fixing parts of our infrastructure to be self-
service

Any Questions?
tom.haddon@canonical.com

juju.ubuntu.com
mojo.canonical.com

