


Load Testing at Yandex

Alexey Lavrenuke



What is Yandex

Load Testing at Yandex



Yet another indexer



Yet another indexer



Yandex





Yandex’s mission is to help people 
discover new opportunities in 
their lives.

8



Yandex’s mission is to help people 
discover new opportunities in 
their lives.

8

Russian search engine 

Started at 1997 

Most popular search engine in Russia



Why do we need Load Testing

Load Testing at Yandex



Albert Einstein*

Once we accept our limits,  
we go beyond them.

* some say Einstein didn't say that but the expression is still beautiful



DevOps

Developers have never faced with 
performance problems before production 

Sysadmins do not know service's 
architecture 

Performance problems highlighted 
during load testing encourages people 
to work together solving them

11



Different kinds of problems

〉 Stateless services. High throughput 
and velocity (banner system) 

〉 Scenario-based services (mail) 

〉 Different protocols (inter-service 
communication) 

〉 Batch systems (statistical services)

12



Our main tool

Load Testing at Yandex



Yandex.Tank: a ten-years history

Better software is produced by those 
forced to operate it* 

phantom is a very fast web-server 

phantom-benchmark is a plugin for it that 
acts as a client. And it is also fast 

Yandex.Tank is built around phantom-
benchmark. But today it is even more 
capable

* quoted from Theo Schlossnagle's "Operational Software Design" talk announce 14



Yandex.Tank today

Yandex.Tank is an opensource project 

〉 Primary language is Python 

〉 Default load generator is 
phantom (C++) 

〉 JMeter support

15



Yandex.Tank's internal architecture

Yandex.Tank is a meta-tool 

〉Tank provides common workflow for 
different load generators 

〉Generator should create sufficient load 
and measure response characteristics 

〉Tank has modular design

16
By Dave Hakkens [CC BY-SA 3.0], via Wikimedia Commons



Use Yandex.Tank

Load Testing at Yandex



Load testing environment at Yandex

Cloud of tanks 

Cloud of targets 

A service that stores test results 

DevOps, again: enable developers 
to perform load tests with minimum 
efforts

18



Use cases

Stateless: phantom + Yandex.Tank 

Scenario-based: JMeter + Yandex.Tank 

Different protocols: JMeter, phantom in 
some cases or custom solutions + 
Yandex.Tank 

Batch systems: not using Yandex.Tank.  
Will discuss them later

19



How to install it

20

Phantom

Jmeter

Yandex.Tank



How to install it

Ubuntu PPA

Python package

20

Phantom

Jmeter

Yandex.Tank



How to install it

Ubuntu PPA

Python package

20

Phantom

Jmeter

Yandex.Tank

Ubuntu PPA
From sources



How to install it

Ubuntu PPA

Python package

20

Phantom

Jmeter

Yandex.Tank

Ubuntu PPA
From sources

Any way you want



How to install it

Ubuntu PPA 

Python package

21

Phantom

Jmeter

Yandex.Tank

Ubuntu PPA 
From sources

Any way you want

Docker repository



Configure your first load test

〉 .ini files 

〉 good defaults 

〉 redefine defaults on multiple levels 

it is rather easy to use Yandex.Tank 
to make automated load tests

22



Configure your first load test

〉 .ini files 

〉 good defaults 

〉 redefine defaults on multiple levels 

it is rather easy to use Yandex.Tank 
to make automated load tests

22



Configuration example, load.ini

Section header: for each plugin

23

[phantom]



Choose target

Target address: IP, IPv6 or domain name

24

[phantom] 
address = my.service.com

http://my.service.com


What do we send

Ammo in one of possible formats

25

[phantom] 
address = my.service.com 
uris = / 
  /mypage.html 
  /clck/page?data=hello 
headers = [Host: example.org] 
  [Accept-Encoding: gzip,deflate]

http://my.service.com


Load type

Add schedule

26

[phantom] 
address = my.service.com 
uris = / 
  /mypage.html 
  /clck/page?data=hello 
headers = [Host: example.org] 
  [Accept-Encoding: gzip,deflate] 
rps_schedule = const(1, 40s)

http://my.service.com


First test

Save config as load.ini and shoot 

a smoke test: just some shoots

27

yandex-tank -c ./load.ini 



Test types

Load Testing at Yandex



Open and closed systems

29

Closed system Open system

Closed systems have negative feedback that makes it impossible to "bury" the 
service. Users wait for the responses before making new requests 

No negative feedback in open system. Internet is an open system



Finding max performance

Closed model, gradually raise thread count 

each thread sends requests one-by-one

30

yandex-tank -c ./load.ini 
   -o "phantom.instances_schedule=line(1, 40, 10m)» 
   -o "phantom.rps_schedule="



Times distribution graph

31



Times distribution graph

31

thread count 
(schedule)RPS

times distribution 
(each second)



Finding max performance on times dist graph

32

response times distribution graph



Finding max performance on times dist graph

32

response times distribution graph



Finding max performance on times dist graph

32

linear 
growth

response times distribution graph



Finding max performance on times dist graph

32

top performance

linear 
growth

response times distribution graph



Finding max performance on times dist graph

32

top performance

degraded!linear 
growth

response times distribution graph



Finding point of failure

Open system. Hard schedule 

emulate open system with multitude of threads

33

yandex-tank -c ./load.ini 
   -o "phantom.rps_schedule=line(1, 1000, 10m)" 
   -o "phantom.instances=10000"



Response times quantiles graph

34



Response times quantiles graph

34

load schedule 
(expected RPS)

quantiles

response times



Finding point of failure on RT quantile graph

35

response times quantiles



Finding point of failure on RT quantile graph

35

response times quantiles

imbalance  
started



Finding point of failure on RT quantile graph

35

response times quantiles

imbalance  
started RPS of failure



Measuring response times

Open system, constant load. Load  level from SLA or from previous 
tests 

don't forget about warming up

36

yandex-tank -c ./load.ini 
   -o "phantom.rps_schedule=line(1, 300, 30s) const(300, 5m)" 
   -o "phantom.instances=10000"



Mind your spikes

37

spikes on quantile graph



Mind your spikes

37

spikes on quantile graph



Common spikes reasons

"Heavy" requests in your ammo. See if 
spikes become more often on higher load 

Periodical processes on your server. Cron 
job or cache synchronization. Garbage 
collector 

Someone else queries your server 
periodically

38



Investigating reasons for spikes

39

Service downloads something periodically:

memory consumption network send/receive



Investigating reasons for spikes

39

Service downloads something periodically:

memory consumption network send/receive



Finding leaking resources

Open system, constant load, long period 

set your load level at 80-90% from maximum level you've 
found before

40

yandex-tank -c ./load.ini 
   -o "phantom.rps_schedule=line(1, 700, 30s) const(700, 1h)" 
   -o "phantom.instances=10000"



Testing methodology

〉 Smoke test. Ensure your system is working and you have all the 
metrics needed 

〉 Performance test. Closed system, growing number of threads 

〉 Imbalance test. Open system, hard schedule, linear growth 

〉Measuring timings. Open system, constant load level from SLA 

〉 Find leaking resources. High load level. 

〉 Any other test you need.

41



Approaching batch systems

Load Testing at Yandex



Machine learning system

43

The 
machine

An interesting 
person

codependent 
filters 

with history

Ordinary 
people

Mark 
relevant 
events

Event 
log



44

codependent 
filters  

Machine learning system

Mark 
relevant 
events



44

codependent 
filters  

Targeting

Statistics

Billing

Machine learning system

Mark 
relevant 
events



Living with a batch system

Millions of events in one log. Thus, no RPS 

Log sizes varied over the day. Can't change 
load level. Can't make it "flat" or linear 

Can't use Yandex.Tank or any other load 
generator. Still want to see performance 
limits and trends

45



Why having X2 server is never enough

Assumption: if we have an X2 server and it 
works then we have enough time to do 
something before we reach our 
performance limit in production 

But how much time do we have and 
what exactly should we do?

46



First step: collecting metrics

We collected different kind of metrics from 
all our servers. 

Some of them were useful in understanding 
the results of experiments 

But they work only if the change is instant 
and big enough

47



Problem: too many metrics

There are a lot of metrics. Really a lot 

And we don't know for sure which of them 
are the reasons and which are the 
consequenses 

Lower the number of dimensions

48



Solution: scatter plots

Uncorrelated Linear dependency

49



What scatter plot can tell us

50

Non-zero 
process time 
for zero-sized 
logs

Non-linear 
tail

Outliers



Compare observations

51



Compare observations

Test vs Prod 

New release vs current 

Period in the past with today

52



Find trends

Basic idea: build linear model 
on each release and compare the 
coefficients 

But the data is too noisy and the model is 
unstable 

53



Making it better

Clean the dataset by using density-based 
clusterization 

Use points from the biggest cluster to build 
the linear model 

Investigate the reasons for outliers and 
smaller clusters

54



Dig deeper: components dependencies

55

The 
machine

codependent 
filters 

with history

An interesting 
person

Ordinary 
people

Mark 
relevant 
events

Event 
log



Dig deeper: components dependencies

56

codependent 
filters 

with history

An interesting 
person

Ordinary 
people

Mark 
relevant 
events

Event 
log



Dig deeper: components dependencies

Investigated component dependencies 

Extracted data flow from code 

Converted them into graph diagram 

Found critical path: the longest path in that 
graph

57



Critical path visualization

Collected data about each component work 
times and wait times for each processed log 

Visualize them on critical path 

Now we can find bottlenecks and see if 
they migrate in new releases

58



Testing the batch system

〉 Learn about the architecture 

〉 Collect a lot of metrics. Write tools to collect additional metrics 

〉 Find correlations 

〉 Automate trend detection 

〉 Find the critical path 

〉 Investigate outliers

59



Summary, links and contacts

Load Testing at Yandex



What did we learn today

〉Yandex.Tank: a universal load testing tool 

〉Load testing methodology 

〉How to approach batch systems

61



Useful links

Our chat room:   gitter.im/yandex/yandex-tank

About Yandex.Tank project:   yandex.github.io/yandex-tank 

Yandex.Tank on github:   github.com/yandex/yandex-tank 

Yandex Tank API on github:    github.com/yandex-load/yandex-tank-api 

phantom on github:   github.com/mamchits/phantom 

Read the docs on ReadTheDocs:   yandextank.readthedocs.org

62

https://gitter.im/yandex/yandex-tank
http://yandex.github.io/yandex-tank/
https://github.com/yandex/yandex-tank
https://github.com/yandex-load/yandex-tank-api
https://github.com/mamchits/phantom
https://yandextank.readthedocs.org/


Alexey Lavrenuke 

testing engineer

Contacts

@direvius, #yandextankdirevius@yandex-team.ru

mailto:direvius@yandex-team.ru


Let’s go beyond our limits!


