Configuration Pinocchio
The Lies Plainly Seen and the Quest to be a Real Discipline

Andre Masella

May 15, 2015

Andre Masella
Configuration Pinocchio



Overview

v

Where are we?
SRSLY?

How do we get out?

v

v

v

Are we there yet?

Andre Masella
Configuration Pinocchio



When did configs get complicated?

> In The Before Times, usually software was installed once and
left alone.

» Cloud and cluster computing means running the same things
many ways.

» Application have spread out beyond the binary (e.g., into the
database).

» Testing is no longer possible by starting the binary on a
work station.

Andre Masella
Configuration Pinocchio



Why are configs complicated?

v

Complexity is semantic and independent of the format.

v

There is a conflict between terse (easy to write) and
explicit (easy to read).

v

Macro languages add additional behaviour.

v

There are strange embedded programming languages.

Andre Masella
Configuration Pinocchio



What is a Configuration?

» Configurations are usually generated by an ad hoc process
where constants in the code are externalised.

» This including a configuration file, command-line arguments,
built-time arguments, environment variables, and information
in a database.

» The format doesn’t really matter. You can transform any of
those to a “config file".

Andre Masella
Configuration Pinocchio



Terse and Explicit

» Terseness is achieved two ways: macros and default
propagation.

» If the macro language is separate from the binary, the
expansion can be observed. Often, it is built-in.

» Default propagation works in many ways:

> elided parameters in parts of the configuration
» values that override (in the config, environment, or on the
command line)

Andre Masella
Configuration Pinocchio



Survey of Configurations

» Examined common servers’ configurations: Apache, NGINX,
Samba, Asterisk, Make, BIND, and CUPS.
> Looked at default propagation mechanisms and found:
» local stanza, global stanza, binary default (implicit)
global stanza, local stanza, binary default (implicit)

local stanza, template stanzas, binary default (explicit)
hybrid (Apache)

vV vYyy

» macro languages and embedded programming languages

Andre Masella
Configuration Pinocchio



Survey of Configurations — Highlights

» Apache can change most of the configuration based on the
query (e.g., different security depending on the browser).

» Apache and NGINX'’s rewriting rules are Turing complete!
Roland Illig has implemented a Towers of Hanot solver.

» BIND has different default propagation schemes depending
on the parameter.

» BIND also has a rewrite system, though not Turing complete.
» Make has contextually-determined lazy or eager evaluation.

> Asterisk does GoTo via string bashing.

Andre Masella
Configuration Pinocchio



Weird Machines

» If Apache’s URL rewriting can be Turing complete, then every
incoming URL is a program executed by the mod_rewrite
virtual machine.

» URLs are a strange byte-code for a weird machine.
» Weird machines are targets for exploitation.

» Many configurations define weird machines for the queries in
the binary.

» Since they are Turing complete, they can’t be checked for
correctness.

> If they do things like Asterisk, where we compute jump
targets from user data, that’s scary.

Andre Masella
Configuration Pinocchio



Composability

» Our configurations lack composability, which is what cloud
configurations demand.

» There should be a configuration that configures a server for
running on metal and in Docker.

» We already have composition for some servers. LDAP
queries as embedded in configurations.

» String bashing needs to go away.

Andre Masella
Configuration Pinocchio



Solution: Divide and Conqueror

» Separate the macro lanquage and default propagation from
the binary.

» Make EPLs less weird and either using existing languages
or more byte-code-like interfaces.

» Make a configuration lanquage that can handle the
composition easily.

» Creating a unified configuration format is not worth doing.

Andre Masella
Configuration Pinocchio



Not-So-Weird Machines

» Replace weird machines with existing scripting
languages (e.g., Guile, Lua, FORTH, GameMonkey, TCL,
JavaScript).

» There are many obscure programming languages that few
people know; when you create a new programming language,

you can be guaranteed that no one will know it. —
K. Schaffrick

> If you really need a machine, make it virtual, not weird.

Andre Masella
Configuration Pinocchio



Byte Code and Virtual Machine

» Replacing weird machines with byte-code will be easier to:

>

vV vy VvVYyy

implement (easy to parse, easy to build a simple VM)
optimise (convert to LLVM/JVM/CLR)

verify and secure

debug (crash and dump the machine state)

specify

» People can also build good tools on top of it.

Andre Masella
Configuration Pinocchio



Configuration Languages

A language for configurations needs:

» have a sensible default propagation policy

v

composability in the face of multiple binaries and formats
» be semantically meaningful

the features of normal languages (e.g., types, debugging,
libraries)

v

Andre Masella
Configuration Pinocchio



Why not use traditional languages?

» They aren’t very good at it!

» Imperative languages make determining data flow our
problem, but we don't care.

» Functional ones require us to know lots about the format of
our data, which we don’t know and will change.

» They are concerned about I/O and a whole bunch of other
things that are unhelpful for configurations.

Andre Masella
Configuration Pinocchio



Existing Configuration Languages

Coil Flabbergast? HOCON Jsonnet

Paradigm Functional Functional Imperative™ Functional
Side-effect Free Yes Yes No Yes
Inheritance Prototype Prototype Prototype Prototype
Typing Strength Weak Strong Weak Strong
Typing Enforcement Dynamic Dynamic Dynamic Dynamic
Schema Validation None None None None
Turing Complete No Yes No Yes
Scoping Lexical Dynamic Lexical Lexical
Default Propagation Inheritance Scope, inheritance Inheritance Inheritance
Output Format Python objects Text, Custom Java, Python, or Ruby objects JSON

NixOS Pan Pystachio
Paradigm Functional Imperative Imperative
Side-effect Free Yes No Hybrid*
Inheritance None Class-based Class-based
Typing Strength Strong Strong Strong
Typing Enforcement Dynamic Hybrid* Dynamic
Schema Validation None Assignment Request
Turing Complete Yes Yes No
Scoping Lexical Lexical Hybrid*
Default Propagation Operator Inheritance Inheritance
Output Format Java objects JSON, XML Python objects

* Depends on context. T Mine.

Andre M

ella

Configuration Pin



Existing Configuration Languages

Most are functional.

v

v

Most use prototype inheritance.

v

More dynamic scoping than expected.

Some schema validation.

v

v

All are very immature.

Andre Masella
Configuration Pinocchio



Conclusion

» Stand back and decide what your config files really are.
» Stop the weird machines.

» Delegate the configuration manipulation to a configuration
language.

Andre Masella
Configuration Pinocchio



Thanks

v

Kyle W. Schaffrick, Google, Inc.

Dr. Grainne Sheerin, Google, Inc.

v

v

Dr. Dan G. Brown, University of Waterloo
James L. Schofield, Couch Labs, Inc.

v

Andre Masella
Configuration Pinocchio



