
Theo Schlossnagle, Founder @Circonus, @postwait on Twitter

Operational Software Ignorance
Buys
Pain

https://www.flickr.com/photos/hoyvinmayvin/4906678960



Tenet #1

Designing for the unknown 
should never burden today
Compromise when forced.

Design with tomorrow’s expected volume,
but today’s functional requirements.

https://www.flickr.com/photos/alexander/20090860



Tenet #2

Never be left curious as to 
what your software is doing
Observability is the only fast-path to success.

https://www.flickr.com/photos/jox1989/4764186425



Tenet #3

Understand what your 
software was doing
This is one of the trickiest tenets.

You can’t log every instruction performed, every packet 
sent & received, every context switch, every I/O.

Log things that are infrequent,
measure things that are frequent.

What’s frequent? I said this was tricky.

https://www.flickr.com/photos/guest_family/6175062186



Tenet #4

Understand internal failures

The only thing worse than a malfunction in production,
is one without sufficient actionable data.

Core dump, stack trace analysis, etc.

These can wake people up.

https://www.flickr.com/photos/skipthefiller/2451481428



Tenet #5

Operator remediation of an 
external failure is a bug
A system failing, a disk failing, a network partition, etc.

Once the external failure is remediated, no human being 
should be involved in returning the (internal) system to 
correct operation.

https://www.flickr.com/photos/timzim/2308099322



Tenet #6 & #7

Tight coupling 
reduces resiliency

Loose coupling 
reduces debug-ability



Tenet #8

Avoid difficult problems 
if possible
One does not “just add” replication, consensus and fault 
tolerance into systems.

Never solve a harder problem than you are presented.

The best solution to a problem is to remove the problem.

https://www.flickr.com/photos/shakestercody/2124972276



A tail of two systems Queueing

Storage

https://www.flickr.com/photos/skynoir/8300610952



From RabbitMQ to Fq

RabbitMQ: Oh, the outages we’ve had.
violates #1, #2, #3, #5, #8

Fq:
(#1) build only semantics we need
(#2/#3) DTrace probes
(#4) cores dumps and backtrace.io
(#5) handled by simplicity of design and use
(#6/#7) push decoupling out, gain debug-ability
(#8) punt clustering downstream to clients

https://www.flickr.com/photos/fotologic/2165675515



ns level deep routing



From Postgres to Snowth

Postgres 8… hacked in a column store using arrays
Tenet #3: build pg_statsd
Tenet #5: … build Snowth

Snowth: ring topology time-series store
(#1/#8) only commutative operations,
(#2) DTrace probes
(#3) Circonus itself (statsd, histograms, etc.)
(#4) backtrace.io
(#7) implemented Zipkin (Dapper-like) tracing







quartile bands



“mvalue” best-guess modes


