
Debugging and Extending

Distributed Coordination Systems

@rgs_
member of @twitterSRE

ZooKeeper committer

agenda

● Twitter infrastructure
● how does it all communicate
● ZooKeeper: good, not great & bad parts
● the use cases
● pushing ZooKeeper to its limits
● debugging your pipelines
● bleeding edge features + extensions
● contributing back

twitter infrastructure

● erstwhile monolithic app
● now, thousands of services that need to:

○ discover each other
○ share config data
○ distribute & discover sharded datasets
○ contend for distributed locks
○ elect primaries, secondaries, etc
○ … and more!

how does it all communicate

● Apache ZooKeeper provides low-level
primitives for:
○ maintaining & propagating configuration
○ distributed synchronization
○ group membership
○ liveness checks

apache zookeeper (the good parts)

● well maintained recipes for locking, leader
election, sharding, leases, etc

● it’s been battle tested over the years (almost
venerable at this point)

● libraries available for most languages (C,
Java, Python, Go)

apache zookeeper (not great parts)

● session handling is easy to get wrong
● without careful thought, apps can bloat the

number of watches/reads/writes needed
● not hard for apps going into GC turbulence

to DoS a cluster
● session setup (in 3.4) is expensive,

thundering herds are problematic
● no eager checks for ACLs, exists(), ...

apache zookeeper (the bad parts)

● throttling support is rudimentary at scale
● no way to introspect writes which timed out
● no client-side stats/introspection
● server-side stats collection mechanism is in-

band
● arcane serialization format (jute)

the use cases

● /configs (runtime decisions: what to do?)
● /services (discovery: where is it?)
● /locks (acquisition: who owns it?)

though: do we really need the same
consistency model for all three?

service discovery: the easy part
from kazoo.client import KazooClient

cli = KazooClient("cluster.tld:2181")

cli.create(

 "/services/api/%s:9090" % socket.gethostname(),

 "http/json",

 ephemeral=True

)

service discovery: the hard part

● pings every ⅓ sessionTimeout
● discovery != availability (end-to-end health

checks)
● partitions (caching strategy needed)
● n+1 reads on every upstream instance

startup
● updates are ~expensive
● no way to check create() timeouts

distributed locking: the easy part
cli= KazooClient("cluster.tld:2181")

lock = cli.Lock(

 "/locks/db/users/shards/00",

 socket.gethostname()

)

with lock:

 # serve shard

distributed locking: the hard part
● liveness check: you still need an external healthcheck
● when should you yield the lock?

○ on disconnect: might be too noisy
○ on session expiration: might never converge

config dist: the easy part

def updates_cb(*args, **kwargs):

 # something

cli.get_children(

 "/configs/features", watch=updates_cb

)

config dist: the hard part
● size constraints
● versioning
● blocking in the event thread

pushing ZooKeeper to its limits

● x-DC locks with < 1.sec timeouts
● configuration distribution to > hundreds of

thousands clients
● one of the biggest mesos production clusters

debugging your pipelines

● ideally, we’d release frequently enough to all
clusters with more stats & visibility on every
release

● lots of legacy clients didn’t take elections
that well

● ad-hoc & client-side introspection needed
● out-of-band monitoring would help

bleeding edge

● we’ve been running 3.5 (trunk+patches) for
~2 years

● local sessions are great, you should use
them (modulo bugs)

● when possible, check at the edge not at the
leader (i.e.: ACL checks, NoNode, etc)

extensions

● given the wide variety of clients (using a
combination of versions, languages),
backwards compatibility is a must

● we retrofitted backpressure by reusing the
liveness parts of the protocol (i.e.: ping
replies & watches)

● to enhance visibility we tagged requests

contributing back

● released zktraffic: tools to analyze the
ZooKeeper protocol:
https://github.com/twitter/zktraffic

● uncovered many client & server-side bugs,
we sent patches upstream

● we’ll drive the next ZK release (3.4.7)
● hopefully sync with upstream soon

questions

● tweet @TwitterSRE, @rgs_
● we hang out at #zookeeper (FreeNode) too
● rgs@twitter.com

bonus slide: read-only support

● for ~1.5 years we did use extended read-
only support (ZOOKEEPER-1607). It
generally works well, though it needs a
client-side change

● it would be nice to upstream this change, as
a complement to the current read-only
support

bonus slide: Netty/Finagle

● there is server-side Netty support in ZK
(default is NIO)

● we decided to use Finagle Futures instead

