
Moving Large Workloads from a 
Public Cloud to an OpenStack 

Private Cloud: Is It Really Worth It?

July 12th, 2016

Nicolas Brousse | Sr. Director Of Operations Engineering | nicolas@tubemogul.com



Who are we?
An enterprise software company for digital branding

● Filtered over 12.6 Trillion Ad Auctions in 2015

● Served over 3 Billion Ad Impressions on linear TV via our PTV 
solution

● Process bids in less than 50 ms

● Serve bids in less than 80 ms (includes network round-trip)

● Serve 5 PB of monthly video traffic



Who are we?
A team of Operations Engineers

● Comprised of SREs, SEs and DBAs

● Ensure the smooth day-to-day operation of the platform 
infrastructure

● Provide a cost-effective and cutting edge infrastructure

● Manage over 2,500 servers (virtual and physical)



● Java (a lot!)
● MySQL (Percona, MariaDB)
● Memcached, Couchbase
● Aerospike, Vertica, Druid
● Kafka
● Storm
● Zookeeper, Exhibitor
● Hadoop, HBase, Hive
● Terracotta
● ElasticSearch, Logstash, Kibana
● Varnish
● PHP, Python, Ruby, Go...
● Apache httpd
● Nagios, Sensu
● Ganglia, Graphite, Grafana

Technology Hoarders

● Puppet
● HAproxy
● OpenStack
● Git and Gerrit
● Gor
● ActiveMQ, RabbitMQ
● OpenLDAP
● Redis
● Blackbox
● Jenkins, Sonar
● RunDeck
● Tomcat, Jetty, Netty
● Qubole
● Snowflake
● AWS DynamoDB, EC2, S3, SWF...



Mixed Infrastructure

Public Cloud On Premises 2016 Private Cloud Deployment



High Level Technical Overview

Bidding Layer Ad 
Serving

- High Volumes
- Low Latency
- Small Packets

- Large Data Sets
- Low Latency

- Fast Processing
- Large Caches

Low Latency User 
Database for User 

Targeting and Frequency 
Capping



● Our high volume and low latency traffic makes our proximity to 
some partners matter.

● Huge datasets used for decisioning require high performance 
infrastructure, which costs a lot. Even with reserved capacity.

● Instances’ packet per second limitations lead us to large 
public footprint and poor backend performances, especially for 
load balancers.

● Network disruptions with no root causes.

Public Cloud: Technical Challenges



Go in-house in 4 locations and 3 continents, in less than 6

 months, using a ready-to-go cloud solution and two part-time

 engineers. Then, go celebrate in Vegas.

EASY!

Our Strategy



Go in-house in 4 locations and 3 continents, in less than 6

 months, using a ready-to-go cloud solution and two part-time

 engineers. Then, go celebrate in Vegas.

EASY!

Our Strategy (revised)

3 years



Go in-house in 4 locations and 3 continents, in less than 6

 months, using a ready-to-go cloud solution and two part-time

 engineers. Then, go celebrate in Vegas.

EASY!

Our Strategy (revised)

3 years

OpenStack and Bare Metal



Go in-house in 4 locations and 3 continents, in less than 6

 months, using a ready to go cloud solution and two part-time

 engineers. Then, go celebrate in Vegas.

EASY!

Our Strategy (revised)

3 years

OpenStack and Bare Metal 3 dedicated



Go in-house in 4 locations and 3 continents, in less than 6

 months, using a ready to go cloud solution and two part-time

 engineers. Then, go celebrate in Vegas.

EASY!

Our Strategy (revised)

3 years

OpenStack and Bare Metal

keep it up and running

3 dedicated

YEAH!



● Which infrastructure is being moved?
● How do you compare apples to apples?
● Do you plan to overcommit?
● Do you cost properly for engineering resources, software 

maintenances, and various support?
● Does your design make trade-offs on High Availability?
● Do you plan for a test environment and R&D?
● Are you using your public cloud at its best?
● Are you building a public cloud or optimizing your environment?
● Do you plan for growth and how does it impact your cost models?
● Which locations are you deploying to? What is the impact on 

bandwidth and data center costs?

TCO analysis: what to consider?



● Be Fair: Challenge your Public Cloud partners 
and share your TCO with them.

● Keep It Simple: Limit the scope of your TCO to 
a clear and well known subset.

● Make Clear Assumptions: Have a defined list 
of feature sets on what you are building.

Three simple TCO rules



We built a test environment with 
Eucalyptus to move our integration 

environment on it.

How did we start?



We built a test lab environment with a 
vendor using CloudStack to move our 

integration environment on it.

How did we start (again)?



We built a test lab environment and first 
data center location ourselves using 

OpenStack on Gentoo and shared the 
lab for our software engineers’ integration 

environment.

How did we start (really)?



● Do not share your lab: Your lab is meant to fail and be 
destroyed. Don’t assume people will be OK to work with 
something unreliable.

● Don’t mess up your block storage strategy. No last minute 
changes.

● Starting a first data center location may require a lot of 
paperwork time, executive approval, and hardware mistakes. 
Plan ahead.

● OpenStack is complex. Don’t make it more complex.

First Failures and Lessons Learned



We (re)built our lab and prod environment 
with a vendor using OpenStack on 

Ubuntu to move our QA environment into 
one region.

How did we reboot?



We (re)built our lab and prod environment 
ourselves by using OpenStack on 

Ubuntu to move our production 
environment into one region.

How did we reboot (again)?



In Production...
● First traffic switch went smoothly and allowed us to decrease our 

footprint by 40% and our load balancer footprint by 95%.

● Progressive traffic migration is not easy. Consider the impact of 
multiple environments to maintain and all application dependencies.

● Load Balancers, and core data services run on bare metal and 
leverage VLANs.

● Fully automated bare metal and OpenStack provisioning.

● We are deploying three new on-premise locations in Q2/Q3 2016.

● Limit scope to our high volume and low latency infrastructure.



● OpenStack requires a long learning curve and design phase. 
Account for it, in terms of cost, skill-set, and time.

● We are not building a Public Cloud. Be very clear on your 
feature set and business case.

● You don’t know your application as well as you think. Be ready to 
adapt quickly and don’t overlook the impact of network traffic 
that switches from private to public.

● Really, you don’t know your application as well as you think. Be 
ready to deal with ip conntrack table full.

Lessons Learned



● Moving in-house led to an estimated 30% cost savings and 
reduced our server footprint.

● The improved visibility on our network traffic and our full 
application stack greatly helped for troubleshooting and 
performance improvements.

● Have a strong technical need for it. Cost shouldn’t be the 
only driving factor.

So, is it worth it?



Nicolas Brousse @orieg


