Linked [}

DNS: Old solution for modern
problems

Thomas Jackson & Rauf Guliyev

Traffic SRE
LinkedIn

Linked [})

What is it that “Traffic SRE” does

Responsible for:

Global PoPs
Proxies
“Fixing” it

Basically boils down to:
Get traffic from the user to the correct frontend in the correct DC as fast as possible

What do we use?

. ©
traffic .server"

Why service discovery?
Traffic is easy!

PFEFF, S0 EASY.

» Obviously hosts are where they are, how hard could it be?
- Load balancing is easy!
» Routing is easy!

* Multi-tenant

- Legacy
- Lots of microservices: new ones all the time
- Dynamically changing scale

Why service discovery?
What does our environment really look like?

* LinkedIn

- Slideshare
- Lynda

- Etc.

‘ "
.
& [.'t
> ' "
_

Why service discovery?
Isn’t this problem already solved?

Common solutions:

Frameworks: rest.li / thrift / etc.

Cons: Request/Response + DynamicDiscovery (solves more than we want...)
custom (usually zk-based) solution

Cons: doesn't scale to all platforms, all services, etc.

Common problems
fairly high barrier to entry (meaning FOSS and legacy won't easily integrate)

In a large-scale, multi-tenant environment relying on any single solution can cause
some problems

Picking a solution

Why do we need another service discovery thing

HOW STANDARDS PROUFERATE:
(66 AIC CHARGERS, CHARACTER ENCOOINGS, INSTANT MESSAGING, ETC)

17! RiDICULOLS!

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONES

https://xkcd.com/927/

Picking a solution
How do you pick a solution

Gather requirements
Find past/possible/passable solutions
Do it! (pick a solution)

Picking a solution: How do you pick a solution
Gather requirements

What do we need?

reliable service discovery
Differentiate between hosts that “want” traffic and ones that don't (OOR hosts)

What do we want?

A single solution
Easily debuggable solution
Require no/little work

Picking a solution: How do you pick a solution
Find past/possible/passable solutions

Multiple sources of truth (primarily internal topology, rest.li, range)

Closest solution in existence was rest.li
ldea for using DNS directly in ATS

10

Picking a solution: How do you pick a solution
Do it! (pick a solution)

DNS: the original name -> IP solution

We decided to go with dns-discovery and we are here to talk about it -- so it must
have worked right? ;)

And DNS is awesome, SRV records anyone?

11

DNS is Awesome
Example SRV response

$ dig srv http. tcp.profile.linkedin.com

;» ANSWER SECTION:

_http. tcp.profile.linkedin.com. 3 IN SRV 0 0O 8080 profilel.linkedin.com.
_http. tcp.profile.linkedin.com. 3 IN SRV 0 0O 8080 profileZ.linkedin.com.
_http. tcp.profile.linkedin.com. 3 IN SRV 0 0 8080 profile3.linkedin.com.

;; ADDITIONAL SECTION:
profilel.linkedin.com. 3600 IN

>

10.136.148.97

10.136.148.98
profile3.linkedin.com. 3600 IN A 10.136.148.219

>

profile2.linkedin.com. 3600 IN

;5 Query time: 13 msec

Architecture
How do we design infrastructure?

Set your runtime priorities
Create service contract

While (!requirements_met)

Create design

Understand the design

How will it fail (hopefully NOT fail, but it is inevitable)?
How will it scale?

How will it be extended?

Document it!

13

Architecture
Set your runtime priorities

Terms:
Availability: will it respond to a query?
Consistency: will all of them respond with the same thing?
Accuracy: will the response be the same as the data source?

For this particular product: availablility -> consistency -> accuracy

14

Architecture
Service Contract

Eventually consistent data across the cluster
Best-Effort consistency to data source
Best-Effort "real" status

Best-Effort "host" resolution

Client is responsible for
Following DNS RFC (for failover)
Load balancing

15

Architecture
V0.1

DNS resolver

!

4 N

Source of truth

. /

Architecture

V0.2

// —~

N— -

In-Memory

cache

N— -

.

DNS resolver

-~

_

Source of truth

~

/

17

Architecture
V0.3

// —~

N— -

In-Memory

cache

N— -

_

DNS resolver

-

_

Source of truth

~

/

18

Architecture
V0.4

// N
" -

/

— TN
~— - DNS resolver
In-Memory Eventual
cache persistence
~—_ I N _
4 N ™ 4

_

Source of truth

/

_

Source of truth

/

_

Source of truth

~

/

19

Architecture
V0.5

—

(—
N— -

In-Memory
cache

N— -

_

~ N
" -

Eventual
persistence

N— S

DNS resolver

-

_

Source of truth

~

/

-

_

Source of truth

~

-

/

_

/

Source of truth

~

/

20

//

Architecture
V0.6

-

Distributed
Healthchecking

N N
~—_ | P _ DNS resolver
In-Memory Eventual
cache persistence
~—_ I N A
N N
Source of truth Source of truth
/U /

_

-

_

Source of truth

/

21

YOU'HAVE'A|
QUESTION

o HAVEANRS
ANSWER?

memegeneratormg

22

Architecture
Heading off some common questions

The source of truth should be able to handle all lookups!

Even if we assume that all sources of truth could (which is a fairly large "if") we don't necessarily want it to-- as there
are potential tradeoffs made for accuracy over reliability (even though they may be small)

But we can make everything use X instead of using this
This works in theory, but in practice something is always outside of "everything" (LBs, FWs, acquisitions, etc.)

What about availability”?

We use BGP to announce the same anycast IP address from multiple hosts

23

Implementation
Why is SRE building this anyways?

This is a key piece of infrastructure, and at first we where the only users on the
roadmap

Infrastructure should be written by those who support it-- and have to handle the
phone calls when it breaks

Because we can, E - engineers ©

a8 Ces ?\ o o \ f'i |
5 “ AN — lv‘" %
-

e Ay

WE ARE ENGINEEHS, =3
WEJ-G’ANQIIII ANYTIIING

¢

24

Implementation
Prototype — in Python

1 week to get to staging

Python ran into some serious scale problems in staging

Able to do 800 healthchecks/s per host— which isn’t a lot!
Curse you GIL!I!

£

?ﬂﬂﬂ" GIL

' ‘o},t). -
L "
Vi ‘\A. ~
".!_- // -
. . y

.../ ‘A/
EAT CONCURRENCY" .~
I . mehegenefitor.ned

25

Implementation
First cut — in Golang

~1 day

Basically, rough around the edges but lightweight and extremely quick
thanks to golang (and goroutines)! S

26

Implementation
Bake time

Test function, failure, and scale
DNS is EASY to test!

Golang makes concurrency testing easy
go build —race

We weren't even the first users! (we were third!!)

27

Implementation
Problems while baking

CONCURRENCY PROBLEMS

- Concurrency
Deadlocks— channels are blocking!

- Concurrency
RWNMutex -- can’t recursively acquire

WHY/DID|IT HAVE TO BE _'
CONCURRENCY Pnnmmsm

Productionalizing
Monitoring/Alerting guidelines

Metrics

Service health

Gororoutines

CPU/Memory usage

Gossip

Pacemaker delay

BGP
Plugin health

Number of lookups, loads, response latency, etc.
Customer focused metrics (how do we perceive your service)

Alerts

All of the metrics you care about ©
Tune thresholds as you go

29

Outcomes

Significantly reduced complexity
~2k unique DNS service names

Dramatic decrease in convergence time (~3s instead of 1+ day)

Ubiquitous service discovery

Even curl works with it!!
Other people are already using it!

Leverage existing DNS infrastructure
We get ~800 QPS of the ~25k total QPS

Self-supporting community

30

GBEAT SIIBGES

i

N

- <
7'- !

.

!

"

.

31

©2014 LinkedIn Corporation. All Rights Reserved.

