


​ Thomas Jackson & Rauf Guliyev
​ Traffic SRE
​ LinkedIn

DNS: Old solution for modern 
problems



3

What is it that “Traffic SRE” does

• Responsible for:
• Global PoPs
• Proxies
• “Fixing” it

• Basically boils down to:
• Get traffic from the user to the correct frontend in the correct DC as fast as possible

• What do we use?



 Traffic is easy!

4

Why service discovery?

• Obviously hosts are where they are, how hard could it be?
• Load balancing is easy!
• Routing is easy!



 What does our environment really look like?

5

Why service discovery?

• Multi-tenant
• LinkedIn
• Slideshare
• Lynda
• Etc.

• Legacy
• Lots of microservices: new ones all the time
• Dynamically changing scale



 Isn’t this problem already solved?

6

Why service discovery?

• Common solutions:
• Frameworks: rest.li / thrift / etc.

• Cons: Request/Response + DynamicDiscovery (solves more than we want…)
• custom (usually zk-based) solution

• Cons: doesn't scale to all platforms, all services, etc.

• Common problems
• fairly high barrier to entry (meaning FOSS and legacy won’t easily integrate)

• In a large-scale, multi-tenant environment relying on any single solution can cause 
some problems



 Why do we need another service discovery thing

7

Picking a solution

https://xkcd.com/927/



 How do you pick a solution

8

Picking a solution

1. Gather requirements
2. Find past/possible/passable solutions
3. Do it! (pick a solution)



1. Gather requirements

9

Picking a solution: How do you pick a solution

• What do we need?
• reliable service discovery
• Differentiate between hosts that “want” traffic and ones that don’t (OOR hosts)

• What do we want?
• A single solution
• Easily debuggable solution
• Require no/little work



1. Find past/possible/passable solutions

10

Picking a solution: How do you pick a solution

• Multiple sources of truth (primarily internal topology, rest.li, range)

• Closest solution in existence was rest.li
• Idea for using DNS directly in ATS



1. Do it! (pick a solution)

11

Picking a solution: How do you pick a solution

• DNS: the original name -> IP solution

• We decided to go with dns-discovery and we are here to talk about it -- so it must 
have worked right? ;)

• And DNS is awesome, SRV records anyone?



 Example SRV response

12

DNS is Awesome

$ dig srv _http._tcp.profile.linkedin.com

...

;; ANSWER SECTION:

_http._tcp.profile.linkedin.com. 3 IN SRV 0 0 8080 profile1.linkedin.com.

_http._tcp.profile.linkedin.com. 3 IN SRV 0 0 8080 profile2.linkedin.com.

_http._tcp.profile.linkedin.com. 3 IN SRV 0 0 8080 profile3.linkedin.com.

...

;; ADDITIONAL SECTION:

profile1.linkedin.com. 3600 IN A 10.136.148.97

profile2.linkedin.com. 3600 IN A 10.136.148.98

profile3.linkedin.com. 3600 IN A 10.136.148.219

...

;; Query time: 13 msec



 How do we design infrastructure?

13

Architecture

• Set your runtime priorities
• Create service contract
• While (!requirements_met)

• Create design
• Understand the design

• How will it fail (hopefully NOT fail, but it is inevitable)?
• How will it scale?
• How will it be extended?

• Document it!



 Set your runtime priorities

14

Architecture

• Terms:
• Availability: will it respond to a query?
• Consistency: will all of them respond with the same thing?
• Accuracy: will the response be the same as the data source?

• For this particular product: availability -> consistency -> accuracy



 Service Contract

15

Architecture

• Eventually consistent data across the cluster
• Best-Effort consistency to data source
• Best-Effort "real" status
• Best-Effort "host" resolution

• Client is responsible for
• Following DNS RFC (for failover)
• Load balancing



 V0.1

16

Architecture

DNS resolver

Source of truth



 V0.2

17

Architecture

DNS resolver

In-Memory 
cache

Source of truth



 V0.3

18

Architecture

DNS resolver

In-Memory 
cache

Gossip

Source of truth



 V0.4

19

Architecture

DNS resolver

In-Memory 
cache

Gossip
Eventual 

persistence

Source of truthSource of truth Source of truth



 V0.5

20

Architecture

DNS resolver

In-Memory 
cache

Gossip
Eventual 

persistence

Source of truthSource of truth

Plugins

Source of truth



 V0.6

21

Architecture

DNS resolver

In-Memory 
cache

Gossip
Eventual 

persistence

Source of truthSource of truth

Plugins

Source of truth

Distributed 
Healthchecking



22



 Heading off some common questions

23

Architecture

• The source of truth should be able to handle all lookups!
• Even if we assume that all sources of truth could (which is a fairly large "if") we don't necessarily want it to-- as there 

are potential tradeoffs made for accuracy over reliability (even though they may be small)

• But we can make everything use X instead of using this
• This works in theory, but in practice something is always outside of "everything" (LBs, FWs, acquisitions, etc.)

• What about availability?
• We use BGP to announce the same anycast IP address from multiple hosts



 Why is SRE building this anyways?

24

Implementation

• This is a key piece of infrastructure, and at first we where the only users on the 
roadmap

• Infrastructure should be written by those who support it-- and have to handle the 
phone calls when it breaks

• Because we can, E - engineers J



 Prototype – in Python

25

Implementation

• 1 week to get to staging

• Python ran into some serious scale problems in staging
• Able to do 800 healthchecks/s per host– which isn’t a lot!
• Curse you GIL!!!



 First cut – in Golang

26

Implementation

• ~1 day

• Basically, rough around the edges but lightweight and extremely quick
thanks to golang (and goroutines)!



 Bake time

27

Implementation

• Test function, failure, and scale
• DNS is EASY to test!
• Golang makes concurrency testing easy

• go build –race

• We weren’t even the first users! (we were third!!)



 Problems while baking

28

Implementation

• Concurrency
• Deadlocks– channels are blocking!

• Concurrency
• RWMutex -- can’t recursively acquire



 Monitoring/Alerting guidelines

29

Productionalizing

• Metrics
• Service health

• Gororoutines
• CPU/Memory usage
• Gossip
• Pacemaker delay
• BGP

• Plugin health
• Number of lookups, loads, response latency, etc.

• Customer focused metrics (how do we perceive your service)

• Alerts
• All of the metrics you care about J
• Tune thresholds as you go



30

Outcomes

• Significantly reduced complexity
• ~2k unique DNS service names

• Dramatic decrease in convergence time (~3s instead of 1+ day)
• Ubiquitous service discovery

• Even curl works with it!!
• Other people are already using it!

• Leverage existing DNS infrastructure
• We get ~800 QPS of the ~25k total QPS

• Self-supporting community



31



©2014 LinkedIn Corporation. All Rights Reserved.©2014 LinkedIn Corporation. All Rights Reserved.


