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Alerting, fault & anomaly detection through:

          Machine learning

          event & stream processing

          Alerting IDE’s
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www.quora.com/unanswered



  Google trends
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Static thresholds → automated anomaly detection

● Not scaling / too much data

● Infrastructure complexity
● Alerting on Patterns



  

Machine learning is a subfield of computer science that evolved from the study of pattern
recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined
machine learning as a field of study that

gives computers the ability to learn without being explicitly
programmed.
Machine learning explores the study and construction of

algorithms that can learn from and make predictions on data.  
Such algorithms operate by building a model from an example training set of input observations in order
to make data-driven predictions or decisions expressed as outputs, rather than following strictly static
program instructions.”

https://en.wikipedia.org/wiki/Machine_learning



  

http://www.extremetech.com/extreme/224445-its-2-0-how-googles-deepmind-is-beating-the-best-in-
go-and-why-that-matters



  
https://research.googleblog.com/2014/09/building-deeper-understanding-of-images.html



  



  

     Using machine learning
for automated anomaly detection



  



  



  

Challenges.
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● e.g. Amazon, Facebook, LinkedIn
● e.g. infrastructure change

context

Challenges
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Challenges

2
● Games vs your infra
● Trained model doesn’t work 

on new scenarios

Changing rules



  

3
Image recognition, security

vs
ops metrics

Signal strength

Challenges
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● e.g. super fast to fast
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4
● e.g. super fast to fast
● e.g. redundancy failover

operator knows best

relevancy

Challenges



  

5
● data prep: filtering, selection, cleaning
● statistical modeling, model selection
● training, testing
● track performance & maintenance
● operate infrastructure
● fitting UX/UI

Effort

Challenges



  

6
● IntrinsicComplexity

Challenges



  

6
● Intrinsic

● Incidental
https://engineering.quora.com/Avoiding-Complexity-
of-Machine-Learning-Systems

Complexity

Challenges
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ML / AD for operations

has merits

BUT: ● Anomalies != Faults. Signal/noise trap
● Significant effort & complexity
● Limited use cases
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What might help

● Enrich metric metadata (metrics20.org)

    clustered, stronger signals with more context

    classification for model selection

    derive relevancy
● integration with CM, PaaS.

    awareness of infrastructure

    awareness of infrastructure change



  

HOW do
THEY do it?



  https://codeascraft.com/2013/06/11/introducing-kale/



  



  
https://www.oreilly.com/ideas/monitoring-distributed-systems

“it’s important that monitoring systems - especially the critical
path from the onset of a production problem, through a page
to a human, through basic triage and deep debugging - be kept 
simple and comprehensible by everyone on the
team.”

“Similarly, to keep noise low and signal high, the elements of
your monitoring system that direct to a pager need to be very
simple and robust. Rules that generate alerts for humans
should be simple to understand and represent a clear
failure.”



  

Conclusion



  



  

CEP
& Stream processing



  

CEP & stream processing
e.g. storm, riemann.io, spark streaming



  

in → logic → out



  
Riemann.io
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CEP & stream processing

Compared to query-based alerting systems:

● Good scheduling guarantees/execution timeliness
● Unfamiliar paradigm (maybe)
● Performance/scalability (maybe)
● operational complexity (maybe)



  

Conclusion



  

Not a bad idea…
But doesn’t get to the root of the alerting problems.



  

Aha!



  



  
Picture by Matt Simmons



  

IDE for alerting

Support programmers  building and maintaining software



  

IDE for alerting

Support programmers  building and maintaining software

Support operators        building and maintaining alerting



  



  







  

1
vs traditional alerting, machine learning

[historical] testing

Key features
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Arbitrary scopedata juggling

Key features



  

Key features

2
Arbitrary scope
Arbitrary data

data juggling



  

3
dependencies

Key features



  
http://www.slideshare.net/adriancockcroft/gluecon-monitoring-microservices-and-containers-a-challenge



  

Key features

4
transcience



  

Key features

5
DRY



  

Key
insights.
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Key insights
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● ongoing maintenance & tuning is critical
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Key insights

1
● ongoing maintenance & tuning is critical
● code for UI and logic > knobs
● leveraging additional data

remove hassle wrt improving signal/noise
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● Author to recipientcommunication



  

Key insights

2
● Author to recipient
● Alert often primary UI

communication



  

Key insights

3
Human > computer



  

Key insights

4
attention is scarce, expensive



  

Key insights

4
attention is scarce, expensive

"provide monitoring platform that enables operators to
efficiently utilize their attention"



  

fault detection
with bosun



Classify series & find KPI’s



Smoothly seasonal: good



Smoothly seasonal: offset



Smoothly seasonal: spikes



Smoothly seasonal: erratic



  

Band(), graphiteBand()

bosun.org/expressions.html

Solution 1/2 : strength



Solution 1/2 : strength



Solution 2/2 : erraticness



  

Deviation-now     
Erraticness now = --------------------------

Deviation-historical

Solution 2/2 : erraticness



  

Deviation-now           median-historical
Erraticness now = --------------------------  *  -----------------------

Deviation-historical          median-now    

Solution 2/2 : erraticness



  

deviation-now * median-historical        
Erraticness now = -------------------------------------------------------

(deviation-historical * median-now) + 0.01

Solution 2/2 : erraticness











  

dieter.plaetinck.be/post/practical-fault-detection-on-timeseries-part-2

More details

Bosun macro, template & example

Grafana dashboard
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Static thresholds → automated anomaly detection

● Not scaling / too much data

● Infrastructure complexity
● Alerting on patterns
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● All about the workflow
● An IDE like bosun exponentially boosts ability to maintain high

signal/noise alerting
● Build & share!



  

Want more ?
● bosun.org/resources presentations by Kyle Brandt (LISA 2014 + Monitorama 2015)
● “my philosophy on alerting” by Rob Ewaschuk
● kitchensoap.com/2015/05/01/openlettertomonitoringproducts
● kitchensoap.com/2013/07/22/owning-attention-considerations-for-alert-design
● “monitoring microservices” by Adrian Cockroft
● (dieter.plaetinck.be/post/practical-fault-detection-alerting-dont-need-to-be-data-

scientist)
● dieter.plaetinck.be/post/practical-fault-detection-on-timeseries-part-2
● metrics20.org/media
● mabrek.github.io
● iwringer.wordpress.com

@Dieter_be - @raintanksaas – slack.raintank.io – raintank.io – bosun.org – grafana.org
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