
Alerting for Distributed Systems
A Tale of Symptoms and Causes, Signals and Noise

SRECon Europe
Dublin, 2016-07-12

Björn “Beorn” Rabenstein, Production Engineer, SoundCloud Ltd.



O(100) engineers
~5% is ProdEng

“You build it, you run it.”
“True DevOps”
“NoOps”

O(10k) engineers
~5% is SRE

SRE “by the book”





traffic * complexity

operational load
e.g. pages



Our SRE organization has an advertised goal of keeping 
operational work (i.e., toil) below 50% of each SRE’s time. 
At least 50% of each SRE’s time should be spent on 
engineering project work that will either reduce future 
toil or add service features. [...] We share this 50% goal 
because toil tends to expand if left unchecked and can 
quickly fill 100% of everyone’s time.

Chapter 5: Eliminating Toil



SoundCloud’s trajectory 3 years ago
All started with a healthy growth in traffic and features…

Radio pager by Vitachao (Template:Unication) CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

!? ???

!!!



The three kinds of “alerts”

SRE book calls them monitoring output.
Alerts is Prometheus terminology.

Expected response SRE book SoundCloud lingo Delivered to

Act immediately Alerts Pages Pager

Act eventually Tickets Tickets /
“email alerts”

Issue tracker / 
email :-(

None (for 
diagnostics only)

Logs Informational alerts Nowhere / 
dashboards



Every time the pager goes off, I should be able to react with a sense of 
urgency. I can only react with a sense of urgency a few times a day before I 
become fatigued.

Every page should be actionable.

Chapter 6: Monitoring Distributed Systems

True story: One day, SoundCloud was down, and a single page fired…

“The outage was so bad, more pages should have fired.” (From a SC Postmortem)

Sense of urgency and action



“What” versus “why” is one of the most important distinctions in writing good 
monitoring with maximum signal and minimum noise.

Chapter 6: Monitoring Distributed Systems

Symptoms vs. causes
How to make pages more meaningful?

Source: Betsy Beyer et al. “Site Reliability Engineering – How Google Runs Production Systems”



At the scale our systems operate, being alerted for single-machine failures is 
unacceptable because such data is too noisy to be actionable.

Chapter 10: Practical Alerting from Time-Series Data

What was thought to be good signals for problems might just be noise today 
(or worse, you can’t say if it is noise or not):

● A machine is down. Happens all the time.
● Load average is high. Really?
● My network uplink / CPUs / disk / RAM ... are fully utilized. Good or bad?

Causes and symptoms are loosely bound in distributed systems.



We combine heavy use of white-box monitoring with modest but critical uses of 
black-box monitoring. The simplest way to think about black-box monitoring 
versus white-box monitoring is that black-box monitoring is symptom-oriented 
and represents active—not predicted—problems. [...]

For paging, black-box monitoring has the key benefit of forcing discipline to 
only nag a human when a problem is both already ongoing and contributing to 
real symptoms. On the other hand, for not-yet-occurring but imminent 
problems, black-box monitoring is fairly useless.

Chapter 6: Monitoring Distributed Systems

Black-box vs. white-box
Black-box is just perfect for symptom-based alerting, isn’t it?



Black-box:

● End-to-end test “as the user sees it”.
● Probes may be different from current user traffic.
● Tail latency and rare failures only visible over a long time.

White-box:

● Reported latency serving the frontend might be a lie, but reported 
latency of requests to the backend is “live-traffic probing”.

● Must resist temptation to alert on countless internal details.
● Indispensable to detect imminent problems and to investigate causes.

Pros & cons



● Loss of redundancy (going from N+1 to N+0).
● More complex reasoning based on insights into a system.
● “Nearly full” scenarios.

[...] the idea of treating time-series data as a data source for generating alerts 
is now accessible to everyone through those open source tools like 
Prometheus, Riemann, Heka, and Bosun [...]

Chapter 10: Practical Alerting from Time-Series Data

Imminent problems
White-box and time-series based monitoring FTW.



Static disk-full alert (e.g. Nagios)

100%

85%

100%

85%

Alert!!!

Alert here.

This is fine!?!



Time-series based disk-full alert (e.g. Prometheus)

100%

85%

100%

85%

This is actually fine!

Alert here…     not there



True story: Google’s stats processing pipeline.

Informational alerts and sometimes tickets are great for causes.

Causes are important, too.



Note that in a multilayered system, one person’s symptom 
is another person’s cause.

Chapter 6: Monitoring Distributed Systems

To achieve the decoupling desired in a microservice architecture, teams 
become users of each other (in addition to the “real” user in the big picture). 

Symptom or cause?



We need monitoring systems that allow us to alert for high-level service 
objectives, but retain the granularity to inspect individual components as 
needed.

Chapter 10: Practical Alerting from Time-Series Data

2007 2011 2013 2016

Usage of
external
monitoring



In general, Google has trended toward simpler and faster monitoring systems, 
with better tools for post hoc analysis. We avoid “magic” systems that try to 
learn thresholds or automatically detect causality. [...]

Similarly, to keep noise low and signal high, the elements of your monitoring 
system that direct to a pager need to be very simple and robust. Rules that 
generate alerts for humans should be simple to understand and represent a 
clear failure.

Chapter 6: Monitoring Distributed Systems

Anomaly detection for pages should be simple and robust.

More complex systems can be great under circumstances, but not for pages.

But what about anomaly detection?
Neither symptom nor cause.



Silencing for humans



Google SRE relies on on-call playbooks, in addition to exercises such as the 
“Wheel of Misfortune,” to prepare engineers to react to on-call events.

Chapter 1: Introduction

Every page response should require intelligence. If a page merely merits a 
robotic response, it shouldn’t be a page.

Chapter 6: Monitoring Distributed Systems

Runbooks and robotic responses



Perfectly self-healing systems?
Caveats of automation

Being on-call for a quiet system is blissful, but what happens if the system is too 
quiet or when SREs are not on-call often enough? An operational underload is 
undesirable for an SRE team.

Chapter 11: Being On-Call

Do gamedays, DiRT, “Wheel of Misfortune”, whatever you call it…



The End

May the queries flow,
and the pager stay silent.

Chapter 10: Practical Alerting from Time-Series Data



Bonus Slides



Google SRE has experienced only limited success with complex dependency 
hierarchies. [...] Dependency-reliant rules usually pertain to very stable parts 
of our system, such as our system for draining user traffic away from a 
datacenter. For example, “If a datacenter is drained, then don’t alert me on its 
latency” is one common datacenter alerting rule. Few teams at Google 
maintain complex dependency hierarchies because our infrastructure has a 
steady rate of continuous refactoring.

Chapter 6: Monitoring Distributed Systems

Muting for machines.



Noisy alerts that systematically generate more than one alert per incident 
should be tweaked to approach a 1:1 alert/incident ratio. Doing so allows the 
on-call engineer to focus on the incident instead of triaging duplicate alerts.

Chapter 11: Being On-Call

Alert grouping
Thousands of nodes suddenly cried out in terror…





Source: https://xkcd.com/974/ https://xkcd.com/1319/ 

Automation might not pay off.

https://xkcd.com/974/
https://xkcd.com/1319/


Source: Wolfgang Beyer, https://commons.wikimedia.org/wiki/File:Mandel_zoom_08_satellite_antenna.jpg

Automation introduces a feedback loop…



Source: https://xkcd.com/974/ https://xkcd.com/1319/ 

Automation might not pay off.

https://xkcd.com/974/
https://xkcd.com/1319/

