Extreme OS Kernel
Testing

http://fuzz.ba23.org/

Kirk.russell@shopify.com

s shopify

Who is this guy?

I'm a former Google Storage Site Reliability Engineer.

File 1
Chunk 1 7
File 1
Chunk Server
Chunk 2 -
4 File 2
i Chunk 1
. 7
I
: File 1
¢ Chunk 2 g
| File 1
App < Chunk Mappings__]| Master Chunk Server Chunk 1 redundant
4
l } File 2
____________ ‘ . Chunk 2
Shadow | | g
Master | |
i i e
__________ . Chunk 2 5
Y
File 2
Chunk Server Chunk 1
) 4
File 2
Chunk 2 ’

Who is this guy?

I'm a former Google Storage Site Reliability Engineer.

| was an operating system tester at QNX software systems.

Who is this guy?

I'm a former Google Storage Site Reliability Engineer.
| was an operating system tester at QNX software systems.

Currently, a Production Engineer at Shopify.

File descriptors

Inode table

5 File table
read

1

2

: write

7 > read-write

/home/joe/wikidb

fetc/passwd

What are you talking
about today?

Define fuzz testing

Give an example of kernel fuzz testing
Problems with fuzz testing

|Ideas for a new framework

Provide an example using FreeBSD.

"Bad terminology is the
enemy of good thinking"

Warren Buffett

&) shopify

Terminology

- Non-functional: tests do not relate to functionality

Terminology

- Non-functional: tests do not relate to functionality

- Fuzz: non-function test that deluges software-under-test with random
stuff

Terminology

- Non-functional: tests do not relate to functionality

- Fuzz: non-function test that deluges software-under-test with random
stuff

- Exploratory: unscripted, iterative test design/implementation/execution

Classic Fuzz Testing

s shopify

crashme.c - execute random
machine instructions

$ crashme +2000 666 100 1:00:00

Crashme: (c) Copyright 1990-1994 George J. Carrette
Version: 2.4 20-MAY-1994

crashme +2000 666 100 1:00:00

Subprocess run for 3600 seconds (0 01:00:00)

pid = 15628 0x3DOC (subprocess 1)

crashme: Bad address

pid 15628 0x3DOC exited with status 256

pid = 15629 0x3DOD (subprocess 2)

crashme: Bad address

—_

Problems with fuzz testing.

&) shopify

Pesticide Paradox

A test strategy becomes ineffective as the bugs get fixed.

"The phenomenon that the more you test software, the more immune
it becomes to your tests - just as insects eventually build up resistance
and the pesticide no longer works." [Beizer]

—_

Long test, debug and fix cycles

"The SPARC Linux kernel is remarkably stable; David now requires
that every kernel pass a “crashme” test for about 24 hours before
releasing the source code for it." Linux Journal Issue #27/July 1996

What if the bug/corruption happens in hour #1 but the kernel doesn't
panic until hour #2277

| want a new fuzz test framework
that:

® Continues to find new bugs -- Pesticide Paradox resistant
® Reproduces bug with minimal time and minimal code
® Testcases can be added to a regular regression test

—_

How do you defend against
the paradox?

s shopify

More complexity!

® | will ignore randomness, ordering and threading....
® Could crashme.c only be O(N)?

Would increasing the complexity of the fuzz strategy slow down the effects of
the pesticide paradox?

More complexity!

® Would Madlibs approach be considered O(N?)?
o create one list of objects -- files, fifos, directories, symlinks,...
o create another list of operations -- open, readdir, truncate,...

Adding a new object or operation increases the surface area by N, not 1.

FreeBSD 6.1 -- No strategy for buffer at

unlink ("afifo");
mkfifo("afifo", 0666);
truncate ("afifo", 16000);

FreeBSD 6.1 -- No strategy for buffer at

unlink ("afifo");
mkfifo("afifo", 0666);
truncate ("afifo", 16000);

UNIX98 says "If the file is not a regular file or a shared memory object, the result
is unspecified."

What are you really
fuzzing?

s shopify

What are you really fuzzing?

Regular execution paths and not focused on exceptions.

Random execution of valid kernel call traces.

What are you really fuzzing?

The ordering of kernel calls.
The objects used by the kernel calls

The actual set of kernel calls in the competition

Example of operations:

Every kernel call that | think can panic kernel

Iseek and writes -- sparse files

gcore -- appears to run code with extra assertions

open() is all combinations of flags -- O_TRUNC on a directory
mmap(): use cases from ar, cp, and file utilities

How do you make
work easier for the
kernel devs?

s shopify

How do you make work easier for the
kernel devs?

Especially after you increased complexity...
Frameworks and automation should make our lives easier.

If they don't, then you need a new model...

Frameworks -- First try -- a complete mess:

Create an API between the tests and execution:

Split fuzz test frameworks in half -- use
formated data

Needs to use a real data format not just a programming API:

@ execution engine takes operations/operands as input data
® operation/operand list is generated independently by another tool.

Frameworks -- Third try -- generation and execution are uncoupled

This seems like a good idea.....

® "Write programs that do one thing and do it well."
® "Write programs to work together."
® "Write programs to handle text streams, because that is a universal

interface."

Have a dataset competition

The operations/operands are in a data file now, so you can:

® Create two random sets with disjoint operations
® Have a competition -- treat finding a kernel panic as a game:

O

@)
@)
@)

set that causes a panic first wins

If there is no winner, regenerate a new random set and start again

a winning file contains a collection of culprit operations/operands
Continue the competition with half the number of operations each time.

Why use the term competition and
champion?

® You are trying to converge on one bug at a time.
® This will likely be bug with the most aggressive behaviours
® When we eliminate operations, we will be also be removing other bugs

Eventually, | decided that
thinking was not getting me
very far and it was time to try
building.

Rob Pike

Enter Journaled Soft-Updates

Dr. McKusick gives 2010 BSDCan presentation:

"Adding 'journaling lite' to soft updates and its incorporation into the
FreeBSD fast file system”

There has to be a couple of latent bugs introduced. Can | find them?

Prototype: just try to produce a panic

Provide general purpose test execution framework
Two libraries: test operations vs operands/objects
Easy to add new ideas to the libraries

Stuff programming API -- not data format yet

Prototype: just try to produce a panic

After 6-8 hours of test execution, kernel panics but only when using Journaled
Soft-Updates.

There is a latent bug.

Prototype: just try to produce a panic

After 6-8 hours of test execution, kernel panics but only when using Journaled
Soft-Updates.

There is a latent bug.

"If debugging is the process of removing bugs, then programming must be the
process of putting them in." -- Dijkstra

Prototype: just try to produce a panic

Now add data format support to this execution engine.

| can then experiment with mods/filters to reduce complexity.

Competitions: Start with 100 operations

o

Competitions: Round Two

o

Competitions: Round Three

o

| was able to reduce from 100 operations
to 12 operations

U

Culprit reduction - operation competition

There are 12 operations remaining -- can we still reduce the operations?

The operations/operands are in a data file now, so you can exclude one
operation/operand to see if is the part of the culprit (or a NOP)

Culprit reduction -- 12 different datasets -- 11 operations each

. 2 3 4 5 6 7 8 9 A B c NOPE

Culprit reduction -- 12 different datasets -- 11 operations each

2 3 4 5 6 7 8 9 A B (o] NOPE
3 4 5 6 7 8 9 A B (o] PANIC
NOP

Culprit reduction -- 12 different datasets -- 11 operations each

NOPE

PANIC

NOPE

NOPE

PANIC

PANIC

PANIC

PANIC

NOPE

PANIC

PANIC

PANIC

Culprit reduction -- the champion dataset: 4 operations/30 seconds

5 6 7 8 9 A B Cc NOPE

5 6 7 8 9 A B Cc NOPE

5 6 7 8 9 A B C NOPE

NI BDE woes

Culprit reduction -- and the winners are...

open()/write()
/usr/bin/gcore -c
link()

unlink()

Notice that close() is missing. For more details....

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=159971

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=159971
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=159971

Coda

s shopify

Take away:

e Cross-training - different job ladders can learn from each other

Take away:

e Cross-training - different job ladders can learn from each other
e Treating testing as a software problem works too

Take away:

e Cross-training - different job ladders can learn from each other
e Treating testing as a software problem works too
e Building better tools is difficult

Questions?

http://fuzz.ba23.org/

s shopify

