

The Production Engineering
Lifecycle

Andrew Ryan
Production Engineer
Facebook, Inc.

How we build, run, and disband great reliability-focused teams

• Production Engineering is Facebook’s reliability*-focused
engineering team
• Started in 2009 with a handful of engineers, in 1 office
• Now several hundred engineers supporting dozens of

teams, in 6 offices and 4 countries

* and performance, and efficiency, and scalability, and…

What is Production Engineering @FB?
And why should you listen to me?

Our lab for growing teams and orgs…

• Good coders in at least one non-shell language
• Linux systems
• TCP/IP networking
• Distributed systems design and debugging
• Usually some “reliability engineering” background
• Will be on call

The FB Production Engineer
What kind of candidates do we hire as Production Engineers?

• Strong in coding and software design
• Other varied specialized skills
• Usually no “reliability engineering” background
• Will be on call

The FB Software Engineer
What kind of candidates do we hire as Software Engineers?

• Large scale
• Rapid pace of code/infrastructure change
• High growth rates

The FB Operating Environment
What are we putting our engineers into?

• Developer::PE ratio approximately 10:1
• Not every team can get PE support, even if they want it
• Teams don’t necessarily know what to do with PE’s

Putting it together: PE’s and Devs
Production engineers are a scarce, often misunderstood resource

PEDevs

How do we decide where to start
Production Engineering teams?
Early approaches were hit-or-miss

The “hottest fire” approach The “who screams the loudest”
approach

Yay, we’re getting Production Engineers!
You fix stuff when it’s broken, right?

Yay, we’re getting Production Engineers!
You’re going to take over monitoring, go on call nights and
weekends, do all of our upgrades, and…

Yay, we’re getting Production Engineers!
You’ll be just like the team we had at
$LAST_COMPANY_I_WORKED_AT, right?

Or that team I read about on Hacker News?

1. Ensure an understanding of the PE skillset

Five steps to a successful PE engagement

• Make sure Dev teams know PE’s can code!
• Make Dev teams partners in our hiring process
• Familiarize with PE hiring standards
•Have them interview PE candidates
•Make them attend hiring debriefs
• Share and publicize work done by PE’s

Ensure understanding of the PE skillset
Collaboration and accountability are key

1. Ensure an understanding of the PE skillset
2. Understand the service/software we are

supporting

Five steps to a successful PE engagement

Understand what we are supporting
Use a “maturity model” framework

1. Ensure an understanding of the PE skillset
2. Understand the service/software we are supporting
3. Decide on a level of engagement

Five steps to a successful PE engagement

• Advisory
• 1-2 production engineers, not full-time
• No formal deliverables

• Consulting
• 1-3 production engineers, not full-time
• Formal deliverables, negotiated on an ongoing basis

• Full
• Full-time production engineers, 6+ if on call is needed
• Dedicated team, usually on call

Decide on a level of engagement

1. Ensure an understanding of the PE skillset
2. Understand the service/software we are supporting
3. Decide on a level of engagement
4. Assign the most suitable engineers

Five steps to a successful PE engagement

Assign the most suitable engineers
Balance between personal growth, existing skills, and business needs

❤ Relationship building

Coding

💾 Storage

📡 TCP/IP networking

Efficiency

📈🔔 Monitoring & alerting

🔎 Troubleshooting

🔒 Security

Sit PE’s and devs together

Trash
Talking

Physical
Distance

(not too
close)

Just say no to the “Ops Pit”

1. Ensure an understanding of the PE skillset
2. Understand the service/software we are supporting
3. Decide on a level of engagement
4. Assign the most suitable engineers
5. Actually split up tasks and on call work

Five steps to a successful PE engagement

Actually splitting up tasks and on call
Where the rubber meets the road

Prioritizing task work: Hierarchy of needs

Self-esteem

Belonging

Self
Actualization

Social Needs

Safety & Security

Physiological (food, shelter)

Maslow’s
hierarchy
of needs

PE “Basic” Hierarchy of needs

Expands/Decoms
Advanced monitoring

Service Monitoring & Lifecycle

Server Monitoring & Lifecycle

Server Hardware & Provisioning

Perf tuning
Capacity planning

Weird
Stuff

PE Hierarchy of needs adapted for teams

Facebook
Network

Appliance
(FNA)

1. Avoid burning out your engineers
2. Give your engineers enough time on call to stay sharp
3. Let your engineers do the work they are best at

Integrating on call: guiding principles
Stop and take a deep breath before throwing bodies in the mix

What comprises your actual on call load?
Drive your decisions with facts, not emotions

Code
Issues

Infra
Issues

Urgent

Non-urgent

• Use it when you have:
• Low/medium software/infrastructure complexity
•Moderate volume of issues
• Disadvantages:
•Only scales to team size of ~12
• Engineers often not working at what they are best at

Integrating on call: Mixed rotation
PE’s and Devs mix together in a single on call rotation

• Use it when you have:
•High software/infrastructure complexity
•High issue volume
• >12 engineers to go oncall
• Disadvantages
• Contact points between oncalls increase
• Some issues get dropped and misrouted
• Engineers usually working at what they are best at

Integrating on call: Separate rotations
Devs and PE’s are in separate, concurrent rotations

Separate rotations in action
Facebook’s Core Data Cache team: 5 concurrent rotations

TAO
Server

Memcache
Server

PE
Cache

Cache
Client

mcrouter
Client

• Each oncall has its own service-level alarms
• Umbrella ”Something is really wrong” alarms go to >1 oncall
• On calls constantly coordinate with each other during shifts

• Software/service not supportable
• Use on call integration as a carrot/stick for Dev team
• Get on call as soon as possible: reliability is a muscle, use it

or lose it!

Integrating on call: None
No PE’s are on call!

Integrating multiple timezones to on call
Is the price worth it?

Code
Issues

Infra
Issues

Non-urgent

Urgent
Business

Hours

Off
Hours

• Re-orgs
• Unhealthy team dynamic
• Team has “run its course”
• Move down the

engagement ladder

Disbanding/merging reliability teams
Think “fertilizer” not “failure”

Conclusions

1. “Field of Dreams” approach to PE/Dev integration
2. Separate PE/Dev teams by time and space
3. Leave people in teams too long
4. Leave unhealthy/stagnant teams alive too long
5. Put new senior hires in as tech leads right away

Learn from our failures
We messed this up lots of times so you won’t have to

1. Hire strong generalists
2. Maintain identical hiring standards across global offices
3. Invest in common reliability infrastructure technology
4. Have a consistent approach to starting, running, and

disbanding reliability-focused teams
5. Co-locate PE and Dev teams whenever possible

Learn from our successes
Team mobility and cross-pollination are key

