
Techniques and Tools for

A Coherent Discussion
About Performance

in Complex Systems

Performance Must Matter
First it must be made relevant.

Then it must be made important.

If you don’t care about
Performance
You are in the wrong talk.

@postwait should throw you out.

Perhaps some justification is warranted

Performance…

makes a better user experience
increases loyalty
reduces product abandonment
increases speed of product development
lowers total cost of ownership
builds more cohesive teams

Consistent Terminology
Inconsistent terminology is the

best way to argue about agreeing

RFC: http://l42.org/GwE

Define: Monitoring

Discusses:  
 
components, systems, observability, agents,
static and dynamic properties

http://l42.org/GwE

–Heinrich Hartmann

“Monitoring is the action of observing and checking  
static and dynamic properties of a system.”

tl;dr it’s all about latency…

Throughput vs. Latency

Lower latency often  
affords increased throughput.

Throughput is a well tread topic 
and uninteresting.

Latency is the focus.

–Artur Bergman

“Latency is the mind killer.”

Generally, time should be measured in seconds.
UX latency should be in milliseconds.

Time

Users can’t observe microseconds.

Users quit over seconds.

Users experience is measured in milliseconds.  
 
That said: seconds are the clearest international
unit of measurement. Use non-integral seconds.

–Douglas Adams

“Time is an illusion.  
Lunchtime doubly so.”

–Theo Schlossnagle

“Seconds are the clearest unit of time measurement.  
Use non-integral seconds for measuring time.

Convert for people later.”

Music is all about the space between the notes.

Connectedness

Performance is about how quickly you can
complete some work.

In a connected service architecture,
performance is also about the time spent
between the service layers.

Developing a

Performance Culture

It is easy to develop a rather
unhealthy performance culture.

Focus on

Small Individual Wins

Report on and celebrate

Large Collective Wins

What’s next?

The Future of 
Systems Observability

Have a deeply technical  
cross-team conversation  
about performance

To predict the future, 
we look to the past.
Web monitoring:

• [2000]-> Synthetic Monitoring
• [2010] -> RUM

Systems monitoring:
• [2010] -> Synthetic Monitoring
• [????] -> Observed Behavior Monitoring

A search for the best representation of behavior

To win, 
we must compromise

To conquer our information-
theoretic issue, we must take a
different approach.

Path 1

Full system tracing. 
Sometimes.
Fun…

The way for deep contextual truth.

Often dirty and expensive.

Path 2

Keep the volume, 
Lose the dimensionality.
You can’t find where  
each grain of sand came from.

But you can  
understand an accurate topology  
of the beach over time  
and reason about it.

Path 1
Tooling must transcend the team

and keep conversations consistent

Large-Scale Distributed Systems Tracing Infrastructure

Dapper

Google published a paper:

research.google.com/pubs/pub36356.html

As usual, code never saw the outside.

http://research.google.com/pubs/pub36356.html

Large-Scale Distributed Systems Tracing Infrastructure

Dapper

Google published a paper:

research.google.com/pubs/pub36356.html

As usual, code never saw the outside.

web api
data agg

mq

db

data store

cep

alerting

http://research.google.com/pubs/pub36356.html

Visualization

service1

service2

sr

sr ss crcs

ss

cs? cr?

Siloed Teams

service1

service2

sr

sr ss crcs

ss

cs? cr?

Net Ops

AppTeam1

AppTeam2/DBA

Better Responsibilities

service1

service2

sr

sr ss crcs

ss

cs? cr?

Net Ops

AppTeam1

AppTeam2/DBA

This doesn’t work at all levels

Imagine Service “Disk”
If you trace into each disk request
and record these spans…

we now have an
information-theoretic issue

A pseudo-Dapper

Zipkin OpenZipkin

Twitter sought to (re)implement Dapper.

Disappointingly few improvements.

Some unfortunate UX issues.

Sound. Simple. Valuable.

Thrift and Scribe should both die.

Scribe is Terrible

Terrible. Terrible Terrible.

Zipkin frames are thrift encoded.

Scribe is “strings” in Thrift.

Zipkin is Thift, in base64, in Thrift. WTF?

The whole point is to be low overhead

Screw Scribe

We push raw thrift over Fq  
github.com/circonus-labs/fq

Completely async publishing,  
lock free if using the C library.

Consolidating Zipkin’s bad decisions:
github.com/circonus-labs/fq2scribe

http://github.com/circonus-labs/fq
https://github.com/circonus-labs/fq2scribe

Telling computers what to do.

Zipkin is Java/Scala

Wrote C support:
github.com/circonus-labs/libmtev

Wrote Perl support:
github.com/circonus-labs/circonus-tracer-perl

https://github.com/circonus-labs/libmtev
https://github.com/circonus-labs/circonus-tracer-perl

A sample trace: data from S2

Celebration

Day 1

Noticed unexpected topology queries.

Found a data location caching issue.

Shaved 350ms off every graph request.

Celebration

Day 4-7

Noticed frequent 150ms stalls in internal REST.

Frequent == 90%+

Found a libcurl issue (async resolver).

Shaved 150ms*(n*0.9) off ~50% of page loads.

Path 2 Tooling must expose fundamental
systems behavior.

Sampling frequencies need to change.

First some  
statistical realities
If your model has outliers; and most do.

It is rare that you can confidently claim a
change in behavior from a single datapoint.

You need a lot of data.

At high volume,  
understanding distributions well is the best we can do…  

at least today.

In order to model a system, you need to observe it correctly.

A more concise model of behavior is required.

Because analysis of 240MM data points.
45 billion data points changes the scope.

Thanks!

