Reducing MTTR and False Escalations: Event Correlation at LinkedIn

Michael Kehoe
Staff Site Reliability Engineer
LinkedIn

False Escalations

Have you ever?

Been woken because your service is unhealthy because of a dependency?

Been woken because someone believes your service is responsible?

Spent hours trying to work out why your service is broken?

Agenda

- Project Problem Statement
- Project Goals
- Architecture Considerations
- Correlation Engine Overview
- Results & Takeaways
- Questions

Michael Kehoe \$ whoami

- Staff Site Reliability Engineer (SRE) @ LinkedIn
- Production-SRE team
- Funny accent = Australian + 3 years American

Michael Kehoe \$ whatis PROD-SRE

- Production-SRE
 - Develop applications to improve MTTD and MTTR
 - Build tools for efficient site issue
 troubleshooting, issue detection & correlation
 - Provide direction on site monitoring
 - Assist in restoring stability to services during site critical issues

Problem Statement

Problem Statement

Project Technical Goal

Find problem with a service between a given time period (or ongoing) using:

Web Frontend

Problem Statement Project Success Criteria

- Reduce MTTR on incidents
- Reduce false/ needless escalations

Problem Statement

Expected Use-Cases

Applicable use-cases:

- A service has high latency or error rates
 - Find the problematic service(s)

Non-applicable use-cases:

External monitoring services show slow page-load times

Real-Time metrics analytics (stream processing)

Ad-Hoc metrics Analytics

Alert Correlation

Architecture Considerations Evaluation

- Real-Time metrics analytics (stream processing)
 - Pros
 - Fast response time
 - Ability to do advanced analytics in real-time
 - Cons
 - Resource intensive (especially at LinkedIn scale)

Evaluation

- Ad-Hoc metric analytics
 - Pros
 - Smaller resource footprint
 - Cons
 - Analysis time is slow

Evaluation

- Alert Correlation
 - Pros
 - Leverage already existing alerts
 - Strong signal-to-noise ratio
 - Cons
 - Analysis constrained to alerts only (boolean state)

Evaluation

- Real-time analytics is expensive, but useful
- Ad-Hoc metric analytics is slower, but cheaper
 - Alert Correlation gives us strong signal

At LinkedIn, we had two smaller projects that we could leverage Drilldown + Site-Stabilizer

Near-Time metric analytics & event correlation

Invisualize

Alert Correlation

Existing knowledge available

Where to get started

The ability to correlate is great!

But you need to understand dependencies

Build a callgraph!

Correlation Engine Overview Callgraph

LinkedIn applications emit metrics on a per-API and per-dependency basis

Map metrics to understand dependencies

Simple to build callgraph platform!

Correlation Engine Overview Callgraph

drilldown (Near-Time analytics)

Using callgraph, identifies high-value dependencies (and the associated metrics)

In 5min chunks, analyses high-value metrics
Using a k-means unsupervised algorithm, find similar trends between service metrics

Queryable API

Outputs correlation confidence scores
Normalised between 0-100

Service	Confidence score
cap-backend	79.8541782917
oms-backend	14.832181796
fuse-server	8.75344187723

inVisualize (Alert Correlation)

inVisualize analyses alerts (in realtime) from each service

Use callgraph to calculate the unhealthy service and affected services

Queryable API
Results normalised between 0-100

Visualizes impact

Correlation Engine Overview in Visualize

Site-Stabilizer

Backend service

Collates recommendations from Drilldown & inVisualize

Decorates recommendations with:

Scheduled changes

Deployment events

A/B experiment changes

Architecture

Correlate-fe

API for automation
Auto-remediation
Alert suppressing

UI for manual introspection

Correlate-fe

User Interfaces gives
Responsible service
Correlation Confidence
Root cause
SRE team

Analysis

Correlation API Results

Analysis

Responsible Service Service-C
Correlation Confidence 92.7%

Root Cause Deployment starting 14:28 for Service-C correlates with high latency (details)

Responsible Service Oncall SRE team

Invisualize

Site-Stabilizer

Early Results

Siteops (NOC) has greater visibility on the site

Reducing MTTR

Reducing false escalations

Conclusion

Understand what correlation approach makes sense for you

Understand your dependencies

Build, Integrate and benefit!

Team

Michael Kehoe

Rusty Wickell

Reynold Perumpilly

Govindaluri Kishore

Renjith Rajan

Questions?

Correlation Engine Overview Callgraph

Call count
Latency

RestLi
(Internal API's)

Voldemort
(RO Datastore)

Callgraph-be

Callgraph-be

Callgraph-be

Callgraph-be

Callgraph-be

(RW Datastore)

