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● HardwareLayout file

● Node State

● Disk Capacity and 
State



● PartitionLayout file

● Mapping to nodes

● Partition State



HOW DO THEY INTERACT?



PutBlob WorkFlow

Client

Frontend

1. PutBlob

2. Choose Partition

3. Generate BlobId

DataNode DataNode DataNode

4. Send PUT Request in 
Parallel to all 3 replicas

5. Wait for 2 acks

6. Return BlobId

Sample Blob-Id: 
/AAEAAQAAAAAAAADFAAAAJDMyYWZiOTJmLTBkNDYtNDQyNS1iYzU0LWEwMWQ1Yzg3OTJkZQ.gif



PutBlob Statistics

● Average QPS: 370

● Latencies(95th Percentile):
● SmallBlob (<100KB ): <10ms
● MediumBlob(100KB - 4MB): <10ms (Goes up to 20ms 

extreme cases)

● LargeBlob (>4MB): <50ms (Goes up to 80ms extreme 
cases)



GetBlob Workflow
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4. Wait for at least 1 
successful response 

5. Return Blob
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GetBlob Statistics

● Average QPS: 24K

● Latencies(95th Percentile):
● SmallBlob: <15ms
● MediumBlob: <75ms (Goes up to 700ms extreme cases)
● LargeBlob: <200ms (Goes up to 1.5s extreme cases)



Replication Workflow
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DataNode 1
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8. 
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Replication Workflow

● Inter DC Replication Time: 20-100ms
● Intra DC Replication Time: <10ms



SOME STATISTICS



Use-cases: Images, PDFs, Static files, Videos so on...

Total Capacity: 900TB Serving: 300TB

Growth Rate: 1160GB per day



Git Link: github.com/linkedin/ambry/wiki

Blog Post: 
engineering.linkedin.com/blog/2016/05/introducing-and-
open-sourcing-ambry---linkedins-new-distributed-

We’re Open Source!

https://github.com/linkedin/ambry/wiki
https://github.com/linkedin/ambry/wiki


Thank You!!



The information in this presentation was compiled from sources believed to be reliable for informational purposes only. It 
does not constitute legal or professional advice.   The views and opinions expressed in this presentation are those of the 
authors and do not necessarily represent official policy or position of Linkedin 

All product and company names are trademarks™ or registered® trademarks of their respective holders. 
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