
AMBRY: LinkedIn’s Immutable Blob Storage System

Arjun Shenoy
Data SRE

Motivation

Filers

Metadata DBMedia-Frontend

Clients

NFS Mounted

Media Server

● Not Cost effective

● High MTTR

● Scalability issue

● Operational Overhead

Issues Faced

Reliability Scalability Low MTTR

Motivation

Low Cost

$
Active - Active

Evaluation

#blobstore

Inspiration

AMBRY

1015

Handle Based Horizontally Scalable Petabyte Scalable

Metadata Support Large Blob SupportActive-Active

ARCHITECTURE

CDN

Clients

Ambry-Frontend

Ambry-Server

Clustermap
Manager

Clients

CDN

Ambry-Frontend

Ambry-Server

Clustermap
Manager

Data Center 1 Data Center 2

Cross-Colo Get

Replication

COMPONENTS

 Ambry-Frontend

Coordination Security Non
Blocking

 Ambry-Front End

Non
Blocking

NIO Layer

Scaling Layer

Remote Service Layer

Ambry-frontend (Non-Blocking Model)

Storage

Replication

JBOD

 Ambry-Server

Storage

Responsible Built on

Clustermap-Manager

● HardwareLayout file

● Node State

● Disk Capacity and
State

● PartitionLayout file

● Mapping to nodes

● Partition State

HOW DO THEY INTERACT?

PutBlob WorkFlow

Client

Frontend

1. PutBlob

2. Choose Partition

3. Generate BlobId

DataNode DataNode DataNode

4. Send PUT Request in
Parallel to all 3 replicas

5. Wait for 2 acks

6. Return BlobId

Sample Blob-Id:
/AAEAAQAAAAAAAADFAAAAJDMyYWZiOTJmLTBkNDYtNDQyNS1iYzU0LWEwMWQ1Yzg3OTJkZQ.gif

PutBlob Statistics

● Average QPS: 370

● Latencies(95th Percentile):
● SmallBlob (<100KB): <10ms
● MediumBlob(100KB - 4MB): <10ms (Goes up to 20ms

extreme cases)

● LargeBlob (>4MB): <50ms (Goes up to 80ms extreme
cases)

GetBlob Workflow

Client

Frontend

1. GET(/AAAEQ...zU0wMWQ1Yzg3OTJkZQ.gif)

2. Determination of Partition Based
on the Blob Id

DataNode DataNode DataNode

3. Send Requests to Replicas in
Parallel

4. Wait for at least 1
successful response

5. Return Blob

GetBlob Workflow

Client

Frontend

DataNode DataNodeDataNode DataNode

DC1 DC2

GET404 Cross-colo Get

Response

GetBlob Statistics

● Average QPS: 24K

● Latencies(95th Percentile):
● SmallBlob: <15ms
● MediumBlob: <75ms (Goes up to 700ms extreme cases)
● LargeBlob: <200ms (Goes up to 1.5s extreme cases)

Replication Workflow

DataNode 1

Replication Thread

Store

DataNode 7

Replication Thread

Store

1. GetBlobSince(Offset)

2. GetBlobSince(Offset)3. BlobSinceContext

4. BlobSinceContext

5. Find BlobInfo 6. Context

DataNode 1

Replication Thread

Store

DataNode 7

Replication Thread

Store

7. FetchBlobAndMeta

8.
FetchBlobAnd
Meta

9. Stream

10. Stream

Replication Workflow

● Inter DC Replication Time: 20-100ms
● Intra DC Replication Time: <10ms

SOME STATISTICS

Use-cases: Images, PDFs, Static files, Videos so on...

Total Capacity: 900TB Serving: 300TB

Growth Rate: 1160GB per day

Git Link: github.com/linkedin/ambry/wiki

Blog Post:
engineering.linkedin.com/blog/2016/05/introducing-and-
open-sourcing-ambry---linkedins-new-distributed-

We’re Open Source!

https://github.com/linkedin/ambry/wiki
https://github.com/linkedin/ambry/wiki

Thank You!!

The information in this presentation was compiled from sources believed to be reliable for informational purposes only. It
does not constitute legal or professional advice. The views and opinions expressed in this presentation are those of the
authors and do not necessarily represent official policy or position of Linkedin

All product and company names are trademarks™ or registered® trademarks of their respective holders.

DISCLAIMER

