
A practical guide to
monitoring and alerting
with time series at scale

SREcon17 Americas
Jamie Wilkinson <jaq@google.com>
Site Reliability Engineering, Google

mailto:jaq@google.com

Why does #monitoringsuck?

TL;DR:

when the cost of maintenance is too high
● to improve the quality of alerts
● to improve exploratory tools

https://www.flickr.com/photos/rnddave/8671638756

Nagios: Part of your complete
ecosystem

https://www.flickr.com/photos/rnddave/8671638756
https://www.flickr.com/photos/rnddave/8671638756
https://www.flickr.com/photos/rnddave/8671638756

Why does X ∀ X ∈ {Ops} suck?

the cost of maintenance must scale sublinearly
with the growth of the service

service size: e.g. queries, storage footprint, cores
used

“ops work”

co
st

time

● Homogenity, Configuration Management
● Abstractions, Higher level languages
● Convenient interfaces in tools

○ scriptable
○ Service Oriented Architectures

Automate yourself out of a job

What is “monitoring”

● incident response
● performance analysis
● capacity planning
● failure detection

pr
ox

im
ity

 in
 ti

m
e

measurement granularity

performance analysis capacity planning

incident
response

failure detection

pr
ox

im
ity

 in
 ti

m
e

measurement granularity

performance analysis capacity planning

incident
response

failure detection

Alerting on thresholds

http://www.youtube.com/watch?v=RfCofCkKKk8

Alert when the beer supply is low

Alert when beer supply low

ALERT BarneyWorriedAboutBeerSupply

IF cases - 1 - 1 = 1
ANNOTATIONS {

 summary = “Hey Homer, I’m worried about the beer supply.”

 description = “After this case, and the next case, there’s only
one case left! Yeah yeah, Oh Barney's right. Yeah, lets get
some more beer.. yeah.. hey, what about some beer, yeah
Barney's right…”

}

Disk full alert
Alert when 90% full
Different filesystems have different sizes
10% of 2TB is 200GB
False positive!

Alert on absolute space, < 500MB
Arbitrary number
Different workloads with different needs: 500MB might not be enough
warning

Disk full alert
More general alert based on human interactions:

How long before the disk is full?

and

How long will it take for a human to remediate a full disk?

CALCULUS

ʺ

Alerting on rates of change

http://www.youtube.com/watch?v=Ug2hLQv6WeY

Dennis Hopper's Alert

Dennis Hopper's Alert
ALERT BombArmed

IF speed_mph >= 50

ANNOTATIONS {

 summary = “Pop quiz, hotshot!”

}

ALERT EXPLODE

IF max(ALERTS{alertname=BombArmed,
alertstate=firing}[1d]) > 0 and speed_mph < 50

Keanu's Alert

Keanu's alert

Keanu's alert

ALERT StartSavingTheBus

IF (v - 50)/a <= ${threshold}

Distributions

http://www.youtube.com/watch?v=pjvQFtlNQ-M

Quantisation

4ms

2ms

1ms
 0ms

8ms

1 2 3 4

6.5ms

Quantisation

4ms

2ms

1ms
 0ms

8ms

1 2 3 4

6.5ms

60%

Rate of change in each bucket
8

4

2

Percentile lines of each bucket
8

4

2

8

4

2

Brian Fantana’s Alert
ALERT LatencyTooHigh

IF (job:latency_ms_bucket:rate10s{le=”2”}

 / on (job) group_left

 job:latency_ms_bucket:rate10s{le=”+Inf”}

) < 0.6

ANNOTATIONS {

summary=”60% of the time it works every time”

}

alert design

SLAs, SLOs, SLIs

● SLI → Indicator: a measurement
○ response latency over 10 minutes
○ error rates over 10 minutes

● SLO → Objective: a goal
○ 99.9th percentile below 5ms
○ less than 1% errors

● SLA → Agreement: economic incentives
○ or we get paged

Clients provision against SLO
Jeff Dean, “A Reliable Whole From Unreliable
Parts”
“Achieving Rapid Response Times in Large
Online Services”

http://research.google.com/people/jeff/Berkeley
-Latency-Mar2012.pdf

http://research.google.com/people/jeff/Berkeley-Latency-Mar2012.pdf
http://research.google.com/people/jeff/Berkeley-Latency-Mar2012.pdf
http://research.google.com/people/jeff/Berkeley-Latency-Mar2012.pdf
http://research.google.com/people/jeff/Berkeley-Latency-Mar2012.pdf
http://research.google.com/people/jeff/Berkeley-Latency-Mar2012.pdf
http://research.google.com/people/jeff/Berkeley-Latency-Mar2012.pdf

Error Budgets

Allowing your service some room to fail to
experiment with features
The SLO is as good as your clients need, but
no better.
The SLO is also as bad as necessary to
prevent humans being overloaded.

“My Philosophy on Alerting”

Rob Ewaschuk
● Every time my pager goes off, I should be able to react

with a sense of urgency. I can only do this a few
times a day before I get fatigued.

● Every page should be actionable; simply noting "this
paged again" is not an action.

● Every page should require intelligence to deal with: no
robotic, scriptable responses.

“Alerts” don’t have to page you
Alerts that do page should indicate violations of SLO.

Put diagnostics on a console to look at when the pager
goes off
● disk fullness
● task crashes
● backend slowness

http://prometheus.io

How it works
●Dynamically discover target addresses
●Scrape /metrics pages

○evenly distributed load across targets
●Evaluate rulesets mapped to targets

○vector arithmetic
●Send alerts
●Record to Timeseries Database (TSDB)

Prometheus Client API
import “github.com/prometheus/client_golang/prometheus”

var request_count =

prometheus.NewCounter(prometheus.CounterOpts{

 Name: “requests”, Help: “total requests”})

func HandleRequest … {

 …

 request_count.Add(1)

 …

/metrics handlers can be plain text

HELP requests total requests

TYPE requests counter
requests 20056

HELP errors total errors served
TYPE errors counter
errors{code="400"} 2027
errors{code="500"} 824

(also supports a binary format)

Timeseries Have Types
Counter: monotonically nondecreasing
 "preserves the order" i.e. UP
 "nondecreasing" can be flat

Timeseries Have Types

Gauge: everything else... not monotonic

Counters FTW

Δt

Counters FTW

no loss of meaning after sampling

Δt

Gauges FTL

Δt

Gauges FTL

lose spike events shorter than sampling interval

Δt

Process Overview

Monitored
task 0 Prometheus

Browser

/metrics

http

Service Discovery

Monitored
task 0 Prometheus

Browser

/metrics

http

Monitored
task 1

Monitored
task 2

ZK
etcd

consul
etc

Alert Notifications

Monitored
task 0 Borgmon

Browser

/metrics

http

Monitored
task 1

Monitored
task 2

Alert
manager

key-value
pairs

email,
pagerduty,
slack etc

Prometheus

Long-term storage

Monitored
task 0 Borgmon

Browser

/metrics

http

Monitored
task 1

Monitored
task 2

Alert
manager

key-value
pairs

email,
pagerduty,
slack etc

TSDB

Prometheus

Global & other monitoring

Monitored
task 0

Browser

/metrics

http

Monitored
task 1

Monitored
task 2

Alert
manager

key-value
pairs

email,
pagerduty,
slack etc

TSDB

Other
Prometheus

(eg global, etc)

Prometheus

Sprinkle some shards on it

Scraper shards

Monitored
task 1

Monitored
task 1

Monitored
task 2000

Monitored
task 2000

Monitored
task 0 Borgmon

Browser

http

Monitored
task 1000

Monitored
task 2000

Alert
manager

key-value
pairs

email,
pagerduty,
slack etc

TSDB

Other
Prometheus

(eg global, etc)

Scraper shards

Scraper shards

Prometheus

Configuring Prometheus

prometheus.yml
[targets, etc]

rule files
(DSL)

Configuring Prometheus

prometheus.yml:
global:
 scrape_interval: 1m
 labels: # Added to all targets

 zone: us-east
rule_files:
 [- <filepath> ...]
scrape_configs:
 [- <scrape_config> ...]

Finding Targets
scrape_configs:
 - job_name: “smtp”
 static_configs:
 - targets:
 - ‘mail.example.com:3903’

 - job_name: “barserver”
 file_sd_configs:
 - [json_filenames generated by, e.g. puppet]

 - job_name: “webserver”
 dns_sd_configs:
 - names: # DNS SRV lookup
 - web.example.com

 - job_name: “fooserver”
 consul_sd_configs: # autodiscovery from consul queries

Labels & Vectors

Data Storage Requirements
● A 'service' can consist of:

○ multiple processes running many operations
○ multiple machines
○ multiple datacenters

● The solution needs to:
○ Keep high-dimension data organized
○ Allow various aggregation types (max, average,

percentile)
○ Allow flexible querying and slicing of data (by machine, by

datacenter, by error type, etc)

The timeseries arena
● Data is stored in one global database in memory

(checkpointed to disk)
● Each data point has the form: (timestamp, value)
● Data points are stored in chronological lists called timeseries.
● Each timeseries is named by a set of unique labels, of the

form name=value
● Timeseries data can be queried via a variable reference (a

specification of labels and values).
○ The result is a vector or matrix.

Structure of timeseries

label1
label2

label3
label4

...

Variables and Labels

Labels come from
● the target’s name: job, instance
● the target’s exported metrics
● the configuration: labels, relabels
● the processing rules

Variables and labels
{var=”errors”,job=”web”,instance=”server01:8000”,zone=”us-east”,code=”500”} 16
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 0
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-east”,code=”500”} 12
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 10
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-east”} 50456
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-west”} 12432
{var=”requests”,job=”web”,instance=”server02:8080”,zone=”us-west”} 43424

{var=”errors”,job=”web”,instance=”server01:8000”,zone=”us-east”,code=”500”} 16
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 0
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-east”,code=”500”} 12
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 10
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-east”} 50456
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-west”} 12432
{var=”requests”,job=”web”,instance=”server02:8080”,zone=”us-west”} 43424

Variables and labels

errors{job=”web”}

Variables and labels

errors{job=”web”,zone=”us-west”}

{var=”errors”,job=”web”,instance=”server01:8000”,zone=”us-east”,code=”500”} 16
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 0
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-east”,code=”500”} 12
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 10
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-east”} 50456
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-west”} 12432
{var=”requests”,job=”web”,instance=”server02:8080”,zone=”us-west”} 43424

Single-valued Vector

errors{job=”web”,zone=”us-east”,
instance=”server01:8000”,code=”500”}

{var=”errors”,job=”web”,instance=”server01:8000”,zone=”us-east”,code=”500”} 16
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 0
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-east”,code=”500”} 12
{var=”errors”,job=”web”,instance=”server01:8080”,zone=”us-west”,code=”500”} 10
{var=”errors”,job=”web”,instance=”server02:8080”,zone=”us-west”,code=”500”} 10
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-east”} 50456
{var=”requests”,job=”web”,instance=”server01:8080”,zone=”us-west”} 12432
{var=”requests”,job=”web”,instance=”server02:8080”,zone=”us-west”} 43424

rule evaluation

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

requests{instance="localhost:8001",job="web"} 21235 21244

requests{instance="localhost:8005",job="web"} 21211 21222

→

task:requests:rate10s{instance="localhost:8007",job="web"} 8.777777777777779

task:requests:rate10s{instance="localhost:8009",job="web"} 10.222222222222223

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“variable reference”

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“range expression”

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“function”

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“recorded variable”

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“level”

recording rules

dc:requests:rate10s =

 sum without (instance)

 (task:requests:rate10s)

“level”

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“operation”

recording rules

task:requests:rate10s =

 rate(requests{job=”web”}[10s])

“name”

aggregation based on topology
task:requests:rate10s =

 rate(requests{job=”web”}[10s])

dc:requests:rate10s =

 sum without (instance)(

 task:requests:rate10s)

global:requests:rate10s =

 sum without (zone)(dc:requests:rate10s)

aggregation based on topology
task:requests:rate10s =

 rate(requests{job=”web”}[10s])

dc:requests:rate10s =

 sum without (instance)(

 task:requests:rate10s)

global:requests:rate10s =

 sum without (zone)(dc:requests:rate10s)

relations based on schema

dc:errors:ratio_rate10s =

 sum by (job)(dc:errors:rate10s)

 / on (job)

 dc:requests:rate10s

relations based on schema

dc:errors:ratio_rate10s =

 sum by (job)(dc:errors:rate10s)

 / on (job)

 dc:requests:rate10s

relations based on schema

dc:errors:ratio_rate10s =

 dc:errors:rate10s

 / on (job) group_left

 dc:requests:rate10s

Demo
http://github.com/jaqx0r/blts

http://github.com/jaqx0r/blts
http://github.com/jaqx0r/blts

Recap

● Use “higher level abstractions” to lower cost
of maintenance

● Use metrics, not checks, to get Big Data
● Design alerts based on Service Objectives

Fin
jaq@google.com

http://prometheus.io
http://github.com/jaqx0r/blts

“My Philosophy on Alerting”
“Achieving Rapid Response Times in Large Online Services”

Prometheus (2012) Poster © 20th Century Fox

mailto:jaq@google.com
mailto:jaq@google.com
http://prometheus.io
http://prometheus.io
http://github.com/jaqx0r/blts
http://github.com/jaqx0r/blts

Question Time

