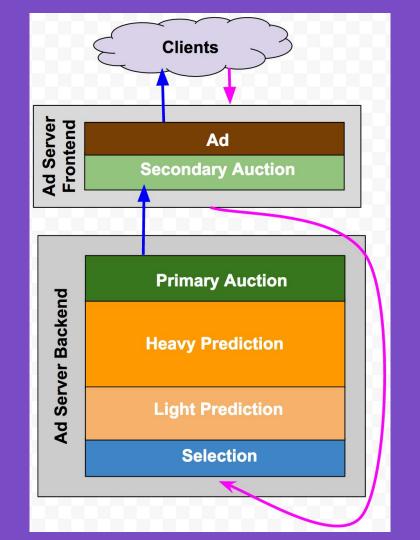
Tune Your Way To Savings!

Sandy Strong (@st5are) Brian Martin (@brayniac)

About the Speakers

Sandy Strong
@st5are
SRE: Ads Serving

Brian Martin
@brayniac
SRE: Storage

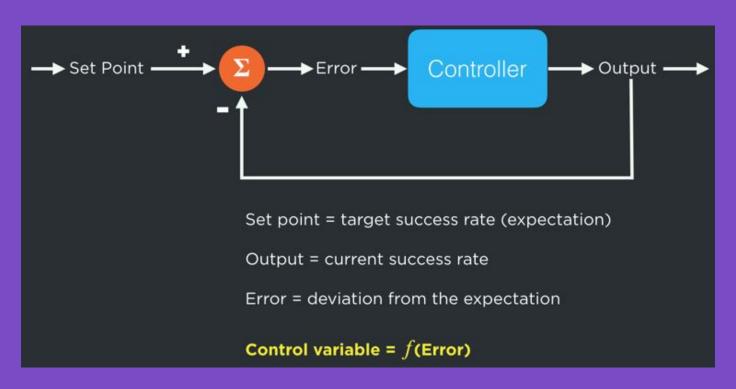

Agenda

- Overview of Ad Server & Our Goals
- Getting Started
- Experimentation & Analysis
- Post-Launch Care & Feeding
- Insights & Takeaways
- Conclusions

Overview of Ad Server & Our Goals

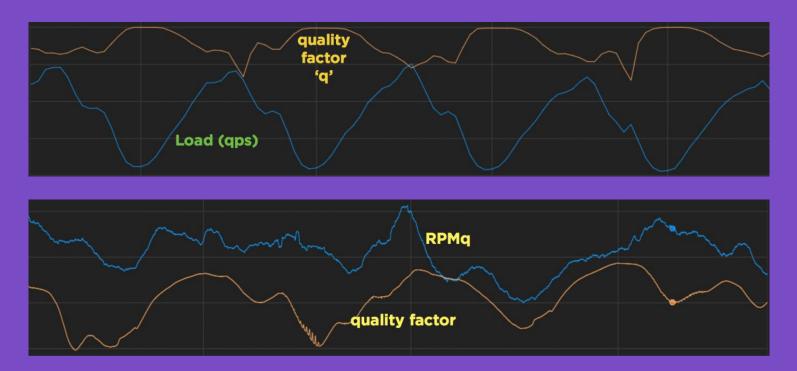
About the Ad Server

- Runs on the JVM
- Frontend: routes Ads requests from clients to backend
- Backend: calculates Ads to display


What is our environment?

Environment: Aurora / Mesos

- Large deployment
- Abstraction over the DC resources
- Schedules jobs across machines
 - May be mixed platform types
- Shared vs Hybrid Mesos



Basic Controller for CPU Utilization & Latency

Key Metrics:

- QF: adaptive Quality Factor
- Latency (affected by CPU, Network)
- RPMq: Revenue Per Thousand queries

Hypothesis & Goals

Hypothesis:

 Greater control over how resources (CPU, network) are used will enable us to use them more efficiently.

Goal:

 Reduce the cost (resource footprint) of running Ad Server without adversely impacting revenue

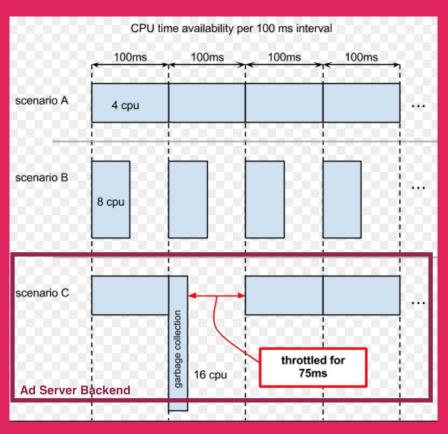
Why?

Small efficiency gains in a large service can result in large savings

Getting Started

Assemble a Team

- Mix of different skillsets
 - Site Reliability
 - Software Engineering
 - Hardware Engineering


Testing Environment

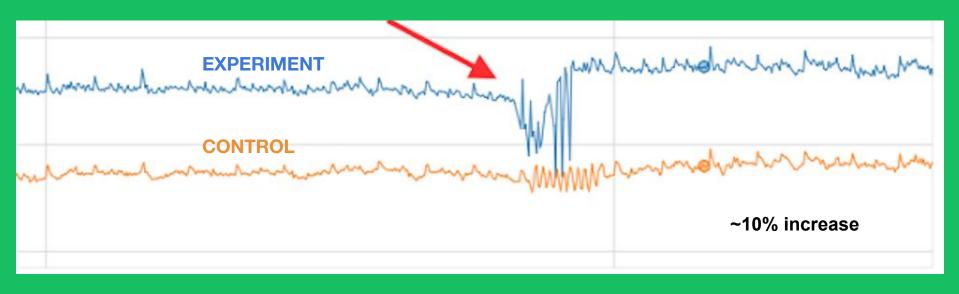
- Get hardware for a hybrid Mesos environment
 - Homogenous hardware platform
 - High-speed networking
 - Isolated from other workloads
 - Ability to tune for the hardware

High-Level Things We Can Change

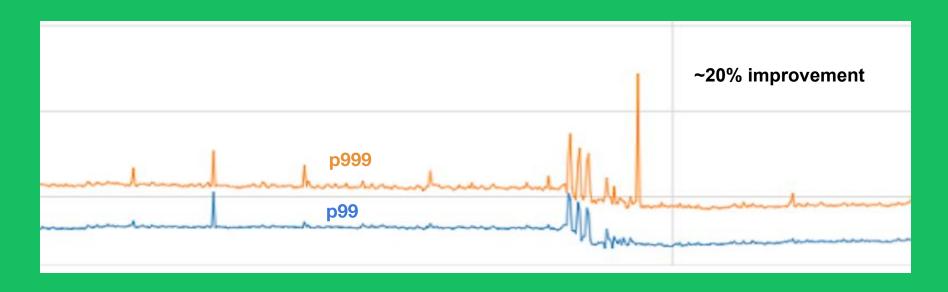
- Container Shape
 - Shrink & shard wider
 - Use taller instances
 - How does this affect QF?
- Mesos Resource Isolation
 - Remove CPU throttling
 - Raise or eliminate network egress limits

Low-Level Things We Can Change

- System
 - Take control over scheduling
 - Enable hugepages
- Hardware
 - Enable/Disable Intel Turbo Boost
- Non-exhaustive list, many more experiments possible


Experimentation & Analysis

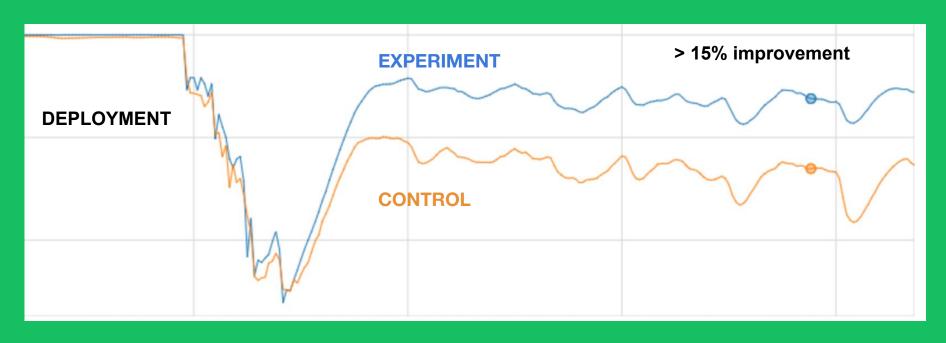
Areas to Explore


Things we thought of first:

- High-speed networking for all instances
- Disable Mesos network egress limits
- Disable Mesos CPU throttling (CFS)

Disable Egress Limit: Bandwidth (Frontend)

Disable Egress Limit: Latency (Frontend)



Hugepages

What are hugepages?

- 2MB or 1GB pagesize vs 4KB default
 - architecture dependent
- 1GB pages must allocate at boot time
- Hypothesis: by using hugepages for the java process, we will see improvements to memory access patterns

Hugepages (1GB): Impact on QF

NUMA

What is NUMA?

- Non-Uniform Memory Access
- Some memory is close, some is far
- Hypothesis: if we can control where our process allocates memory and schedules, we can gain efficiency by reducing foreign memory access

NUMA

- 2-socket systems
 - Half of the RAM is in each zone
 - Memory access across zones is more costly
- Non-pinned:
 - Per-node process memory usage (in MBs) for PID 19494 (java)
 Node 0 Node 1 Total
 Total 10666.06 8476.95 19143.01
- Pinned:
 - Per-node process memory usage (in MBs) for PID 26969 (java)

 Node 0 Node 1 Total
 - Total 16.84 32708.68 32725.52

NUMA Results

- Foreign memory access eliminated
 - 10% to 0%
- L1 Cache
 - 60% clockticks to 15% clockticks
- Cycles Per Instruction (CPI)
 - 1.54 to 1.23 (20% improvement)

Ad Server Backend: Instance Packing

- How will changing the process layout impact efficiency?
 - NUMA / CPU Pinning
- How many instances fit on a machine?
 - If we allocate all cores, this determines possible shapes of the Ad Server job

Ad Server Backend: Instance Reshaping

- How is the application affected by differently shaped containers?
 - 4 14-CPU instances/box != 2 28-CPU instances/box
 - Hyperthreads: Backend exploits CFS
- What does it look like if we give the instance an entire NUMA zone?
 - More cores/threads and memory per instance
 - Fewer instances means more QPS per instance
 - More memory means larger heap to GC

Iterate and Refine

- Experiment, keeping notes about configurations and results
- Repeat until we have same or better performance
- Analyzing data can be challenging because...
 - Compute workloads vary by time, day, and world events
 - Adaptive nature of system in response to changing SR and latency
- Use load tests and redline tests to validate proposed configurations

Exp.#	Summary	Outcome	Start	End	Cluster	Dashboards	Experiment Setup	Notes
	Run frontend and backend on hybrid mesos with network egress limit disabled and to disabled	With 1.5x QPS, RPMq is x% lower than the control clusters	2/10 1:30 PM	2/12 1:30 PM	5	<u>RPMq</u>	 2 frontends per host 1 backend per host tc disabled Network egress limit disabled QF target SR set to 99.9 High-speed network enabled 1.5x QPS 	Attribute Changes: Disable CFS DIsable network egress DIsable tc Expand port range Enable turbo
						Frontend		
						Backend		

Post-Launch Care & Feeding

Ongoing Operational Work

- Hardware delivery & config automation
 - Agree on support model with stakeholder teams
- Fine-tune performance
 - Adapting as production workloads change
 - Weathering application regressions
- Iterative process

Insights & Takeaways

Experiments will never match reality

- Production != Lab
- Be realistic and practical
- Don't be afraid to get it wrong
 - But have a plan for when you do

Stay focused on the metrics you're trying to move

- Don't get sidetracked by micro-optimizations
- Underweight outlier datapoints (avoid rabbit holes)
- Resist confirmation bias

Data-driven decision making

- Make sure you have the right audience for your data
- Think about how you are presenting your data
- Aim for consensus
- Share what you learn

Think about cost

- Cost of tuning efforts (+ ongoing efforts)
- Payout of tuning efforts
 - Reduce capex%
 - Reduce burden on downstreams and storage

Set realistic deadlines

- Account for the unexpected
- Stick to your deadlines
- Show delivery

Conclusions

- Unique challenges
 - Opportunity to learn, hands-on
- Coordinating cross-team
 - Think about all layers of the stack

- Resources saved
 - 6% reduction in CPU
 - >50% reduction in R/W to certain downstreams
- Desired metrics improved
 - QF substantially improved

What's Next?

Upcoming/Ongoing experiments

- More experiments around CPU and NUMA pinning
 - Would 4-pack work better this way?
- Evaluate newer platform, with even more cores

Resources & Further Reading

Resilient Ad Serving at Twitter-Scale (https://t.co/qdmipEyRJy)

Clarifications on Linux's NUMA stats

Systems Performance - Brendan Gregg

Want to learn more?

Twitter is hosting an SRE Open House at HQ on Wednesday, March 15.

RSVP here:

https://t.co/2yLeAFrGcY

Q&A