
Managing Deployments in 
the Age of the Microservice

samschaevitz at google dot com
Gmail & Calendar SRE @ Google

Prepared for SREcon EMEA 2017
Dublin, Ireland
2017-08-31



Agenda
1. Types of Service Changes
2. Why Change Things At All?
3. What Can Go Wrong?
4. Best Practices
5. A Brief Interlude on Naming
6. Payoff



Caveat: 
This talk is targeted for those who 
work on applications composed of 
layered, replicated, sharded, 
lightweight and fine-grained 
services.



Types of Service Changes



Control Surfaces

Type Time to Recovery

Client Change O(Day)

Server Binary Change O(Hour)

Static Configuration Change O(Hour)

Dynamic Configuration Change O(Minute)



Why Change Things At All?



This is reliability engineering. 
The safest thing to do is to 

never change anything!



“A ship in harbor is safe, 
but that’s not what ships are built for.”

- John A. Shedd 



The safest most optimistic and least 
rewarding thing to do is to never 

change anything.



Is a Change Freeze Right For You?

➔ your feature set is complete, forever and ever
➔ your system never ever breaks, and will never break
➔ even if it did, you totally already understand every single failure mode of 

your system
➔ your infrastructure or external dependencies never change
➔ you cannot possibly optimize your costs better than you already have
➔ wouldn’t ever want to adopt any new technologies to make your 

infrastructure more reliable than it already is



“You never know what’s hiding inside 
these systems. You never know exactly 
what’s going to trigger it.”

- Bill Curtis, SVP & Chief Scientist at CAST



“Following the major IT system failure experienced earlier today, with regret we have had to cancel all flights leaving from 
Heathrow and Gatwick for the rest of Saturday,” a spokeswoman said.

image: pexels, cc0



“The Delta Air Lines technology glitch that canceled hundreds of flights Sunday and Monday was smaller than other episodes in recent months that 
cost airlines tens of millions of dollars, but it still served as a reminder of how fragile airline computers are.”

image: pixabay, 
cc0



“A computer problem forced United Airlines to ground all domestic flights for about an hour on Sunday evening, causing a 
cascade of delays and annoying customers throughout the United States.”

image: pexels, cc0



Ideal Change Velocity, the Dev organization’s perspective

ve
rs

io
n

time



Ideal Change Velocity, an SRE’s perspective

ve
rs

io
n

time



How do we 
manage these 

conflicting 
incentives?



Align increases in 
risk exposure 

with decreases in 
risk profile.



What Could Go Wrong?



Examples of System Badness

➔ the client doesn’t show the user the error and silently/automatically retries and succeeds
➔ end user-visible latency when you load your Gmail inbox increases by 10% at the 99th 

percentile
➔ a common Java library has been updated to use a new implementation of HashMap and it costs 

10% more CPU cycles for our main application service to run
➔ Google Wallet integration is broken in the compose box of Gmail
➔ redesigning the UI layout and users hate it
➔ every user trying to access mail.google.com receives a Server 500 error



Cost of Badness

co
st

magnitude

number of users affected



Cost of Badness

co
st

magnitude

number of users affected

severity of badness



Cost of Badness

co
st

magnitude

number of users affected

severity of badness

max (user risk 
aversion)



Calculating Cost of System Badness

Total Disruption Cost ≈ (Number of Affected Users * Disruption Severity)- Max. User Risk Aversion



➔ immediate lost revenue
➔ user trust 
➔ contract violations 
➔ increased infrastructure costs 
➔ engineering time 

Penalty Buckets



User Types

➔ developer team testers 
➔ internal testers
➔ trusted external testers 
➔ free-tier consumers
➔ paying customers 



Best Practices



The Optimal Rollout Is...

➔ staged
➔ progressive
➔ revertable
➔ transparent
➔ automatic
➔ well-understood



● Buildable
● Runnable
● Obvious feature breakages

Developer Team 
Testing



Internal Testing ● More subtle feature breakages
● Obvious performance 

regressions



Trusted 
External Testing

● Do our paying customers (with 
higher risk tolerances) notice 
anything they don’t like about a 
new release?



Some 
Free-Tier Users ● Nuanced performance 

regressions
● Subtle bugs



Remaining 
Free-Tier Users ● Subtler performance 

regressions
● Subtler feature regressions



Paying Users
● Time in earlier stages is 

enough to deploy to most risk 
averse, most expensive to lose 
customers



● Have high-quality (unit, integration) test coverage
● Build your targets as often as possible
● A/B experiment everything
● Automate to limit toil, risk of human error
● Hold back some vocal internal users for the duration of the launch
● Deploy often; limit change surface
● Make it easy to rollback
● Encourage backwards compatibility in code

To Detect Badness as Early As Possible...



A Brief Interlude on Naming



Less Important: Actual Names

image: pxhere, cc0



More Important: Consistent Names

image: pxhere, cc0



More Important: Consistent Names

➔ server name schemas
➔ binary release stages
➔ machines
➔ load-balancing domains
➔ user populations



Payoff



In Return for A Principley-Engineered 
Deployment System...

➔ Detect problems long before the exposure costs you time or money
➔ More, better automation systems
➔ Easier debugging
➔ Automatic rollbacks of bad deployments
➔ Frequent production deployments 
➔ Happier, more productive organizations



A developer is happy because her code has launched.



Questions?



Thanks!



Extras



Glossary

binary push - installing a different binary version of a long-lived 
server, starting it, and migrating traffic previously handled by the 
old version of the process to the new version.

client update - releasing a new version of web, native or mobile 
application code to users, giving them the option to update their 
native or web applications. 

static configuration change - a change that requires restarting 
the same version of your application with e.g. new 
command-line flags read a startup time.

runtime configuration change - a change to a long-lived 
server that does not require a restart to take effect e.g. a list of 
healthy backend services that are able to receive traffic from this 
service.

feature launch - the enabling of new functionality in your 
application, such that it is usable by your customers.

dark launch - the exercise of new code in your application 
without affecting the user’s experience of your application in 
order to gain confidence in new features before the cost of 
rolling back is too high.

image: pxhere, cc0


