
Building an on premise
Kubernetes cluster

D A N N Y T U R N E R

2

Outline

What is K8s?

Why (not) run k8s?

Why run our own cluster?

Building what the public cloud provides

3

Kubernetes

• Open-Source Container Management Platform

• Deploying

• Scaling

• Share Hardware

• Service Discovery

• Configuration Management

4

Kubernetes Terms
• Node

• Server

• Pod

• 1 or more containers

• Redis

• Rails & nginx

• Service

• DNS name for 1 or more pods

• Ingress

• Bridge into the cluster

• Node

• Server

• Pod

• 1 or more containers

• Redis

• Rails & nginx

• Service

• DNS name for 1 or more pods

• Ingress

• Bridge into the cluster
5

Kubernetes Terms

Node

Pod1

Redis

Rails

Nginx

My-App

6

Kubernetes Terms
• Node

• Server

• Pod

• 1 or more containers

• Redis

• Rails & nginx

• Service

• DNS name for 1 or more pods

• Ingress

• Bridge into the cluster

Node1

Pod1

Redis

Rails

Nginx

My-App

Node2

Pod1

Redis

Rails

Nginx

My-App

my-app.my-namespace

http://app.my

7

Kubernetes Terms
• Node

• Server

• Pod

• 1 or more containers

• Redis

• Rails & nginx

• Service

• DNS name for 1 or more pods

• Ingress

• Bridge into the cluster

Node1

Pod1

Redis

Rails

Nginx

My-App

Node2

Pod1

Redis

Rails

Nginx

My-App

Internet

Cluster

 Ingress

my-app

8

Why Kubernetes

• We already use containers

• We have our container management system

• Only runs our monolith

• Scaling unit is a host

• Not open source

9

Why not run K8s

• Long running Jobs

• DB migration

• Fixed scheduling assumptions

• Number of workers per server

• Exposing internal services to external tools

• Stateful services like redis/DBs

10

Why build our own

• We have 2 data centers filled with hardware

• Cloud Pricing might not be competitive at scale

• DC network is closed to the outside world

• don’t have secure communication between servers

• One change at at time

• Stay co-located with databases

• We have 2 data centers filled with hardware

• Cloud Pricing might not be competitive at scale

• Hard to determine op-ex of running a DC

• DC network is closed to the outside world

• don’t have secure communication between servers

• One change at at time

• Stay co-located with databases

11

Why build our own

12

Why build our own

• We have 2 data centers filled with hardware

• Cloud Pricing might not be competitive at scale

• One change at at time

• Easy to connect to resources outside of k8s but in the DC

13

Why build our own

• We have 2 data centers filled with hardware

• Cloud Pricing might not be competitive at scale

• One change at at time

• Security & Privacy

• DC doesn’t need secure communication between servers

• Trusting our data in 3rd party hands

14

On Premise work

• Master Node

• ETCD

• Networking & Ingress

• Persistent Storage

15

Master Components

• Assigns pods to nodes

• IPs to pods and services

• Health Checks

• Cluster is frozen w/o master node

• cluster wont change itself

• external forces can still happen

Master Node

API Server

Controller Manager

Scheduler

16

(High) Availability Strategies

• Start a new one after detecting a failure

• Bottleneck: time to spin up a new master node

• Run multiple at once

• Components are stateless and have leader election built-in

• Bottleneck: failover strategy

17

Multi-Master

• CNAME your master

• Bottleneck: DNS propagation / timeouts

 Send requests to all the masters

• ECMP to a Virtual-IP via an A-Record

• Health checks on your masters!

• Bottleneck: time to withdraw from ECMP group

API

Controller

Scheduler

API

Controller

Scheduler

master.k8s.example.com

master1.k8s… master2.k8s…

http://master.k8s.example.com

18

Multi-Master

• CNAME your master

• Bottleneck: DNS propagation / timeouts

• Send requests to all the masters

• ECMP to a Virtual-IP via an A-Record

• Health checks on your masters!

• Bottleneck: time to withdraw from ECMP group

API

Controller

Scheduler

API

Controller

Scheduler

master.k8s.example.com

http://master.k8s.example.com

19

• K8s data lives here

• Quorum is life

• k8s frozen when quorum is lost

• Can be run on the master nodes

• Limits scaling

• Makes the servers pets not cattle

API

Controller

Scheduler

Master Node

20

• Member discovery

• Static configs

• chef searches

• SRV Records --discovery-srv etcd.example.com

http://etcd.example.com

21

• Member discovery

• Static configs

• chef searches

• SRV Records

• Backups

• Live snapshots

--discovery-srv etcd.example.com

http://etcd.example.com

22

Ingress

• Bridge between the internet and a service

• Ingress Controller + nginx

• Each deploy caused nginx to reload

• We already have a load balancing tier

Node1

Pod1

Redis

Internet

 Ingress

Pod1

Redis Rails

Nginx

My-App
Node2

my-app

Load Balancers

Ingress

• Services can be exposed on every host at a known port

Redis Rails

Nginx

My-App
Node2

Redis

kube-proxy kube-proxy

Load Balancers

Ingress

• Services can be exposed on every host at a known port

• Route directly to pods

Redis Rails

Nginx

My-App
Node2

Redis

kube-proxy kube-proxy

Load Balancers

25

Persistent Storage (Volumes)

• Persistent Volume Claims

• Distributed Storage System

• GlusterFs / Ceph RBS

• Same nodes as k8s Cluster

• Better use of hardware

• Servers are pets once again

• Just buy a SAN?

26

Successful Failure

• We ran production traffic on our on-premise cluster

• Yet, we decided to use the cloud instead

• Upgrades were painful

• Solving a lot of problems ourselves

• We were becoming experts at more things not less

27

Q U E S T I O N S ?

D A N N Y T U R N E R

Check out our blog at engineering.shopify.com
Follow us on Twitter at @shopifyeng

28

Networking

• All to all communication

• Pod & Service IPs

• Routing

• Calico (Software BGP)

• BGP Peer with top of rack switches

• 1 peer per server

• Calico custom filters

