
Instream
SREcon17

Harsh Sharma
SRE @ Linkedin

(Platform & Horizontal)

Agenda

Requirements

Possible Solutions

Instream Design and Architecture

Implementation with sample code

Challenges and Learning

Future Goals

Requirements

Scalable Global
distribution of products

Scalable

Flexibility of Canary
Support

Flexible

Quicker version
rollbacks and rollouts

Speed

Real Time Tracking

Tracking

Possible Solutions and their drawback ?

General Deployment
model

Generic
Deployment

A mechanism to
distribute CLI in

Linkedin

ECL

A tree based
distribution model

Dist Tree

Generic Deployment System

Request Deployement System

Centralized Database

Orchestrator

Artifactory/
git

DeploymentPlan

Status

DeploymentPlan Status Info

Deployment
Request

Desired
Hosts

Artifactory/
git

Centralized Database

ECL

•No canary

•Global distribution in all fabrics

•Difficult and slow rollback

•No real time updates

Dist-tree

Typical Dist-tree

1 2 3

Instream

Bittorent protocol

• Torrent file

• Leechers

• Seeder

• Tracker

0 1 2 3 4 500

Instream Architecture.

Users API Box

Salt Master

Artifactory

kafka

Triggering
torrent

Leechers
(minions)

Status
update

Fetching
Artifacts

Consuming
from Kafka

Pushing to
Couchbase

Transfer request

Real time status

Request for
seeders

Request for
leechers

Couchbase

Seeders
(minions)

Libtorrent as torrent client

• C++ Library

• Easy to use python bindings

Saltstack as remote execution engine

Minion Minions

Minion Minions

MASTER

• Triggering salt module
from salt master
remotely.

Grain

Saltstack as remote execution engine

• Rest API to contact salt
master

• Targeting through grain

• Real time status reflection
through cli.

• Minions send updates to kafka
using kafka rest API’s

• Kafka Consumer consume
from kafka and push to
couchbase.

• Couchbase view for indexing
and querying of data.

Real time status using
Kafka and Couchbase

API and CLI

● CLI example.

Results

• With ECL to distribute some package roughly it takes 3-4 hours

• With this model, per fabric we are distributing in 10 mins

Requirements Status

Scalable Global distribution of
products

Done

Flexibility of Canary Support Done

Quicker version rollbacks and
rollouts

Done

Tracking Done

Challenges and Learnings

Bandwidth control in
production cluster

Bandwidth

When to stop the
torrent ?

Swarm Health

Transferring torrent
file to all the minions:

Magnet Link

Magnet Link

To use it or not ?

DHT

Direct Download
Method

DMZ Boxes

Future Goals

• Pluggable with other
configuration management tools

• Puppet/CFengine/Ansible

• Make data source pluggable.

• Git/Hadoop/File sharing

• Make generic global deployment
model

• start/stop/restart/status/service
check

Orchestration Data Source Deployment

Thank
you

