Query Analyzer

Karthik Appigatla Basavaiah Thambara

Query Analyzer

MySQL at LinkedIn, challenges
Why we built Query Analyzer
How Query Analyzer works
How Query Analyzer helped us

Future

Why do we need a Query Analyzer?

B Operating
Environment

B Performance
Replication

B Data Loss &
Corruption

Categories of Database Downtime

Source: Percona White Paper - https://www.percona.com/files/white-papers/causes-of-downtime-in-mysq|.pdf

Why do we need a Query Analyzer?

Item Incidents % of Total
SQL 20 37.8%
Schema and Indexing 15.1%
InnoDB 15.1%

Configuration 13.2%
Idle Transactions 7.6%
Other 7.6%
Query Cache 3.8%

Causes of bad performance

Source: Percona White Paper - https://www.percona.com/files/white-papers/causes-of-downtime-in-mysq|.pdf

Existing approaches

Slow Query Log
o Adds around 35-40% overhead

o Analyzing slow query logs is another challenge

Existing approaches

Performance Schema

o Requires MySQL restart to enable/disable
o Adds around 15-20% overhead

o Complex to analyze

Existing approaches

Application side monitoring

o Development effort

o Does not give clear picture

Pain Points

Pain Points

o Lack of consolidated view for queries
o Lack of tools to identify problematic queries

o Lack of Historic Query trends

Approach

Capturing packets at network layer

APP 1

PORT
3306

Architecture

AGENT

APP 2

PORT
3306

DB 1

AGENT

APP 3

PORT
3306

DB 2

AGENT

NLENLET

VLV O U B W

A

Centralized
Server

N

v

Ul

How Agent Works

‘ APP ‘

Port
3306
e~

Database Server

How Agent Works

APP

p@ 50 o6 8o
dd d3 c2

89 o0 ee
28 6@ 73

Port
3306

DB

Database Server

ee
ff
oo
61

How Agent Works

APP

Packet
Port Sniffer
3306
DB

Database Server

Agent

How Agent Works

]
MySQL
Protocol
Parser > SELECT * FROM TABLE

WHERE a=1;

Agent

How Agent Works

|
MySQL
Protocol
Parser | SELECT * FROM TABLE Fingerprint | gp| ECT * FROM TABLE
WHERE a=1; ’ WHERE a=?

Agent

How Agent Works

|
MySQL
Protocol
Parser | SELECT * FROM TABLE Fingerprint | gp| ECT * FROM TABLE
WHERE a=1; ’ WHERE a=?

MDS5 of Fingerprint

Y
3C074D8459FDDCE3

Agent

How Agent Works

‘ APP ‘

Query
Response

Port
3306
e~

Database Server

Anonymization Examples

Query: SELECT * FROM table WHERE value1 = ‘abc’
Fingerprint: SELECT * FROM table WHERE value1 = "?'

Query: SELECT * FROM table WHERE value1 = 'abc' AND value2 = 430
Fingerprint: SELECT * FROM table WHERE value1 = "?" AND value2 = 7

Query: SELECT * FROM table WHERE VALUES IN (1,2,3)
Fingerprint: SELECT * FROM table WHERE VALUES IN (?+)

How Agent computes

Checksum (KEY) Query Time Count user db
3C074D8459FDDCE3 . ms+gm:+3ms) 3 app1 db1
B414D9DF79E10545 " S+3S%rs4s+ 1s) 4 app2 db2
791C5370A1021F19 (5n: Szgsr’ns) 2 app3 db3

Query Metadata

]
Checksum Fingerprint First Seen Sample at Max time Min Max
u gerp P Time Time
SELECT * FROM T1 WHERE SELECT * FROM T1
3C074D8459FDDCE3 a>? 1 month WHERE a>0 1ms 3ms
SELECT * FROM T2 WHERE SELECT * FROM T2
B414D9DF79E10545 b=" 1 day WHERE b=430 1s 5s
791C5370A1021F19 SELECT FRC(z'I;/I USLiIRIENE 1 hour SELECU - Exeld) Je 5ms ms

WHERE c<3

How does it all work?

Captures packets on port 3306

Decodes packets into queries

Anonymizes the query

Measures the metrics - query time and count

Locally aggregates configurable time (approximately 60 secs)

Pushes the aggregated data to a centralized server (using SSL)

Query Analyzer Overhead

Transactions per Second (Throughput)

[

[=1
(=]
(=]

LA
(=1
(=]

2
=
2
h
&
&
il
c
=]
=]
L2
I
c
m
E
-

G4

Mumber of threads

Normal Slow Query Performance Schema > “Cuery Anabyzer

Query Analyzer Overhead

Negligible Memory Overhead
Negligible Network Overhead
Negligible CPU Overhead up to 128 threads
Around 3% CPU Overhead for > 128 threads

_.Iinkedin.corn | -l

Number of distinct queries 574

Rank Reviewed

1

w
TLLCOCELL

Query =

select alert.id as alert_id

select * from (select @row := @row + ? as rownum

select postcommit_event.id as postcommit_event_id

select build_event.id as build_event_id

select precommits.id as precommits_id

select deployable_name

select postcommit_event.id as postcommit_event_id

select alert.id as alert_id

select alert.filter as alert_filter

select "cfg2idx_a’."iv2_contributions’.’name’

58 »

2017-08-22 04:05

1y|6m | 1mon | 1week | 24h | 1h

First Seen =

2 months ago

1 day ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

2 months ago

1 day ago

Count% =

78.38(7.647M)

0.00(332)

0.00(24)

0.00(101)

0.07(7.205K)

0.01(707)

0.00(2)

5.11(498.3K)

1.71(166.9K)

0.01(1.227K)

2017-08-22 06:05

aPps -

5.573K

0.24

0.02

0.07

5.25

0.52

0.08

363.21

121.68

42.31

Avg Time =

0.328ms

4.675s

54.072s

7.606s

60.935ms

473.148ms

55.369s

0.199ms

0.446ms

44.600ms

Cumulative Time =

Query Load% ~

41m 50s 32.61
25m 51s 20.16
21m 37s 16.86
12m 48s 9.98
7m 19s 5.7
5m 34s 4.34
1m 50s 1.44
1m 38s 1.29
1m 14s 0.97
54.724s 0.71
e

50

100

Query Info
Checksum 2C76986F52A6B910

Query SELECT target_state.id AS

First Seen 2 weeks ago (2017-08-07 21:31:44)
Last Seen 1 day ago (2017-08-22 06:00:01)
Max Time 52.441ms (2017-08-08 23:12:59)

Min Time 0.005ms (2017-08-08 23:12:59)

Metrics during selected time frame

Metric Count% Average
Time

Query_time 7 33.953ms

Query Trend

Cumulative
Time

7m 36s

Query Values

Min Time

26.615ms

Aug 22, 2017

42.949ms

To | aug 22,

Query Load Explained

Time Count Load
Query 1 2 sec 100 2 * 100 = 200
Query 2 0.1 ms 10M 0.Tm * 10M = 1000
Query 3 10 ms ™ 170m * 1M = 10000

Load Percentage Load
Query 1 200 200/11200 * 100 1.78%
Query 2 1000 1000/11200 * 100 8.93%
Query 3 10000 10000/11200 * 100 89.29%

How can you leverage this?

Data SREs Developers Security Cost Savings
Saves time spent Visually check the load Capture access to Optimized hardware
debugging queries of their query sensitive information usage & estimation

server capacity

Thank You!

