
Query Analyzer

SRE

Karthik Appigatla Basavaiah Thambara



Query Analyzer

● MySQL at LinkedIn, challenges

● Why we built Query Analyzer

● How Query Analyzer works

● How Query Analyzer helped us

● Future



Why do we need a Query Analyzer?

Categories of Database Downtime
Source: Percona White Paper - https://www.percona.com/files/white-papers/causes-of-downtime-in-mysql.pdf



Why do we need a Query Analyzer?

Causes of bad performance

Source: Percona White Paper - https://www.percona.com/files/white-papers/causes-of-downtime-in-mysql.pdf



● Slow Query Log

○ Adds around 35-40% overhead

○ Analyzing slow query logs is another challenge

Existing approaches



Existing approaches

● Performance Schema

○ Requires MySQL restart to enable/disable

○ Adds around 15-20% overhead

○ Complex to analyze



Existing approaches

● Application side monitoring

○ Development effort

○ Does not give clear picture



Pain Points

● Pain Points

○ Lack of consolidated view for queries

○ Lack of tools to identify problematic queries 

○ Lack of Historic Query trends



Capturing packets at network layer

Approach



Architecture

APP 1

APP 2

APP 3

DB 1

DB 2

DB 3

Centralized 
Server

UI

AGENT
PORT
3306

AGENT

AGENT

PORT
3306

PORT
3306



How Agent Works

APP

DB

Database Server

Port 
3306



How Agent Works

APP

DB

Database Server

Port 
3306



How Agent Works

APP

DB

Database Server

Port 
3306

Packet 
Sniffer

Agent



How Agent Works

SELECT * FROM TABLE 
WHERE a=1;

MySQL 
Protocol 
Parser

Agent



How Agent Works

SELECT * FROM TABLE 
WHERE a=1;

MySQL 
Protocol 
Parser SELECT * FROM TABLE 

WHERE a=?

Fingerprint

Agent



How Agent Works

SELECT * FROM TABLE 
WHERE a=1;

MySQL 
Protocol 
Parser SELECT * FROM TABLE 

WHERE a=?

Fingerprint

3C074D8459FDDCE3

MD5 of Fingerprint

Agent



How Agent Works

APP

DB

Database Server

Port 
3306

Query 
Response



Anonymization Examples

Query: SELECT * FROM table WHERE value1 = 'abc’ 

Fingerprint: SELECT * FROM table WHERE value1 = '?'

Query: SELECT * FROM table WHERE value1 = 'abc' AND value2 = 430

Fingerprint: SELECT * FROM table WHERE value1 = '?' AND value2 = ?

Query: SELECT * FROM table WHERE VALUES IN (1,2,3)

Fingerprint: SELECT * FROM table WHERE VALUES IN (?+)



How Agent computes

Checksum (KEY) Query Time Count user db

3C074D8459FDDCE3
6ms 

(1ms+2ms+3ms) 3 app1 db1

B414D9DF79E10545
9s 

(1s+3s+4s+1s) 4 app2 db2

791C5370A1021F19
12ms 

(5ms+7ms) 2 app3 db3



Query Metadata

Checksum Fingerprint First Seen Sample at Max time Min 
Time

Max 
Time

3C074D8459FDDCE3 SELECT * FROM T1 WHERE 
a>? 1 month SELECT * FROM T1 

WHERE a>0 1ms 3ms

B414D9DF79E10545 SELECT * FROM T2 WHERE 
b=? 1 day SELECT * FROM T2 

WHERE b=430 1s 5s

791C5370A1021F19 SELECT * FROM T3 WHERE 
c<? 1 hour SELECT * FROM T3 

WHERE c<3 5ms 7ms



How does it all work?

1. Captures packets on port 3306 

2. Decodes packets into queries

3. Anonymizes the query

4. Measures the metrics - query time and count

5. Locally aggregates configurable time (approximately 60 secs)

6. Pushes the aggregated data to a centralized server (using SSL)



Query Analyzer Overhead



Query Analyzer Overhead

● Negligible Memory Overhead

● Negligible Network Overhead

● Negligible CPU Overhead up to 128 threads

● Around 3% CPU Overhead for > 128 threads



Top Queries



Query Trend



Query Load Explained

Time Count Load

Query 1 2 sec 100 2 * 100 = 200

Query 2 0.1 ms 10M 0.1m * 10M = 1000

Query 3 10 ms 1M 10m * 1M = 10000

Load Percentage Load

Query 1 200 200/11200 * 100 1.78%

Query 2 1000 1000/11200 * 100 8.93%

Query 3 10000 10000/11200 * 100 89.29%



How can you leverage this?

Data SREs

Saves time spent 
debugging queries

Developers

Visually check the load 
of their query

Security

Capture access to 
sensitive information

Cost Savings

Optimized hardware 
usage & estimation 

server capacity



Thank You!


