Networks for SREs: What do I need to

know

Michael Kehoe

Staff SRE

Michael Kehoe \$ WHOAMI

- Staff Site Reliability Engineer @ LinkedIn Production-SRE Team
- Funny accent = Australian + 3 years American
- Former Network Engineer at the University of Queensland

Agenda and Vision

1	Intro
2	Prob
3	Basic
4	Adva
5	Clos
6	Adva
7	IPv6
8	Sum

Today's agenda

ductions

lem Statement

cs of Networks

ances in networks

Networks

ances in Network Speeds

Networks just work right?

Probably...

Probably...Not...

Problem Statement

What are we trying to solve

• Network Design – Has evolved

- Network software/ hardware Has advanced
- Learning The average SRE may not necessarily understand the ramifications
- **Tooling** Has been left behind

What this talk is

• Tale into potential pitfalls of modern day networks

What this talk isn't

• How to make the network do all the things...quickly & reliably...

What this talk isn't

• How to make the network do all the things...quickly & reliably...

• Sorry

Basics of Networks

Basics of Networks

Data Flow of the Internet Protocol Suite

Advances in Network Design

Advances in Network Design

- Clos Networks
- Advancement of network speeds
- IPv6 Implementation (Finally)
- Multi-homed internet connections
- Moving away from traditional internal routing protocols

Clos Networks

Clos Networks

Credit: Facebook

Clos Networks

Credit: Facebook

Speed	Name	Standard	Year
10Mb	10BASE-T	802.3i	1990
100Mb	100BASE-TX	802.3u	1995
1000Mb = 1Gb	1000BASE-T	802.3ab	1999
10Gb	10GBASE	802.3ae	2002
40/100Gb	40GbE/ 100GbE	802.3ba	2010

• What this gives us

 $\begin{array}{c} \leftarrow \rightarrow \\ \leftarrow \rightarrow \end{array}$

- Better transfer bulk speeds
- The ability to have higher concurrency services (1M connection problem)
- Run multiple high-concurrency applications (LPS)

Networks just work right?

Probably...

Probably...Not...

Optimizations Required

Linux Kernel

Network Switches

- Network Interface Cards
 - Various RX/ TX queue size limits/ defaults
 - Various interrupt schemes
 - Plethora of tunables that vary wildly
 - LITTLE TO NO DOCUMENTATION!
 - How do you monitor/ tune it???

- Linux Kernel
 - Lots of network tunables
 - Some defaults assume year ~2000 era hardware
 - •
 - Important to understand the type of application you run and cater your tunables to that.

• E.g. net.ipv4.tcp_max_syn_backlog

- Network switches
 - Similarly to interfaces and Linux software, there's a lot of options
 - Deep Buffers
 - DSCP marking
 - Switching latency
 - DCTCP

Adoption of IPv6

Address Space

Simplified Header

No-NAT

Auto-Configuration

Better Performance

IPv6: Address Space

bit.

• Moving from a 32-bit address space to 128-

• $4B \rightarrow 340TTT$

• Read up on IPv6 addressing representation

• RFC-5952

IPv6: Address Space A SINGLE ADDRESS CAN BE REPRESENTED MANY WAYS

2001:db8:0:0:1:0:0:1 2001:0db8:0:0:1:0:0:1 2001:db8::1:0:0:1 2001:db8::0:1:0:0:1 2001:0db8::1:0:0:1 2001:db8:0:0:1::1 2001:db8:0000:0:1::1 2001:DB8:0:0:1::1

IPv6: Address Space YOU CAN MAKE FUN PHRASES

> :cafe:beef • :feed:f00d: • :bad:f00d: :bad:beef: :bad:d00d: • :f00d:cafe: • :bad:fa11:

IPv6: Address Space or clever advertising

[mkehoe@mkehoe ~]\$ host -6 www.facebook.com www.facebook.com is an alias for star-mini.c10r.facebook.com. star-mini.c10r.facebook.com has IPv6 address 2a03:2880:f113:8083:<u>face:b00c</u>:0:25de

IPv6: Address Space Special Addresses: IPv4

RFC	IP Block	Use
1918	10.0.0/8 172.16.0.0/16 192.168.0.0/16	Private IP Addressing
6890/ 3927	169.254.0.0/16	Link-Local
5771 2365	224.0.0/4	Multicast

IPv6: Address Space Special Addresses: IPv6

IP Block	
::/128	
::1/128	
::ffff:0:0/96	
64:ff9b::/96	
fc00:::/7	
fe80::/10	
ff00::/8	

Use

Unspecified Address Loopback address IPv4 mapped addresses IPv4/ V6 translation Unique Local Address Link-Local address

IPv6: Address Space or clever advertising

[mkehoe@mkehoe ~]\$ host -6 www.facebook.com www.facebook.com is an alias for star-mini.c10r.facebook.com. star-mini.c10r.facebook.com has IPv6 address 2a03:2880:f113:8083:<u>face:b00c</u>:0:25de

IPv6: Simplified Header

	Length	ToS/DS0	CP/ECN	Length	
Identification		Flags Fragment Offset			
to Live Protocol			Header Checksum		
	Source Address				
Destination Address					
	Traffic	Traffic Class Flow Label			
Payload Length		Ne	ext Header	Hop Limit	
Source Address					
Destination Address					

- No need for NAT anymore

 - Less points-of-failure
- Potential for better performance
 - NAT is slow
- Harder for abusers to hide behind NAT

IPv6: No NAT

Simplified Configuration

IPv6: Auto-Configuration

• Stateless = Auto-Configured

• Stateful = DHCP/ Statically assigned

- The elimination of NAT is a significant factor
- <u>Generally</u> less hops across the internet for IPv6 vs IPv4
- Simplified Header gives small amount of optimization

- Don't implicitly trust the network!
- Understand where your packets flow
- End-to-End monitoring of your network. It is the lifeblood of your infrastructure
- For any network infrastructure changes, ensure you understand how to benchmark and monitor it!

Summary

Networks just work right?

