

Mandi Walls

Technical Community Manager for EMEA
@lnxchk
mandi@chef.io
#habitatsh
http://slack.habitat.sh/
Ian Henry @Eeyun___ Habitat Community lead

How Do We Run Applications?

• On a computer
• With an OS
• And some libraries
• And some configuration
• And some way to start it and stop it

We’ve been moving complexity
around rather than reducing it

case	node['platform_family']		
when	'freebsd'		
		false		
when	'arch',	'debian',	'rhel',	'fedora',	'amazon'		
		true		
when	'suse'		
		node['platform_version'].to_f	<	12.0	?	false	:	true		
end

Ugh.

So. Habitat.

• Reduce snowflakeness
• Support microservices
• Manage container creep

https://www.bonanza.com/listings/Premier-Food-Storage-Containers-20-Piece-Set-Grey/443972348

Modern Applications Are Trending Toward

• Immutability
• Platform agnosticism
• Complexity reduction
• Scalability

https://amazingmusthaves.com/products/steel-insulated-food-containers/

What Habitat Gets You

• Defer some decisions to runtime
• Do clean room builds
• Repeatable builds
• Distro agnostic packaging system
• Service runtime and discovery
• Configuration exposed via API
• Packages are signed by the system

Habitat Studio

• Provides a busy box clean
room for your app
• Plus a set of tools for
manipulating and running harts

Why a Studio?

• Declare explicit dependencies
• Ship exactly what you need
• Sign your packages and store artifacts

Habitat Plans

• Plan files are where you put together your builds
• They are bash
• Live with the application

What’s In A Plan?
pkg_name=container_sched_backend

pkg_origin=lnxchk

pkg_version="0.1.0"

pkg_build_deps=(core/rust)

pkg_deps=(core/glibc core/gcc core/gcc-libs)

pkg_bin_dirs=(bin)

bin="container_sched_backend"

pkg_exports=([out]=cfg.out)

do_build() {

 cargo build

}

do_install() {

 install -v -D "$PLAN_CONTEXT/../target/debug/$bin" \

 "$pkg_prefix/bin/$bin"

}

pkg_svc_run="$bin"

Examples at
https://github.com/habitat-sh/core-plans/

What Gets Built?

• Everything. Sort of.
• Build your own apps from source
• Decide if you want upstream binaries or source for
things like runtime
   You don’t have to build Tomcat, but you can

• For COTS, use the binaries and skip steps

Configuration

• Can be manipulated at runtime
• Also travels with the app
• Provides variable substitution and templating using
handlebars http://handlebarsjs.com/

Application Configuration File: TOML

[myconfig]
out = "{{cfg.out}}"
color = "{{cfg.color}}"
{{~# if svc.me.leader ~}}
leader = true
{{ else }}
leader = false
{{/if ~}}

Set Defaults in Habitat – default.toml

leader	=	false	
out	=	"out"	
color	=	"green”	
	
[tomltable]	
var	=	“val”	

The Depot

• You can share plans with the Depot, and other hab users
share theirs
• Has team namespacing
• The core plans are those built by the Habitat team
• https://app.habitat.sh/
• Private build services – Coming Soon!

   https://www.habitat.sh/blog/2017/05/Builder/

Caveat - Internet

• You can build your own stuff inside your own network,
sort of, when it’s all on one machine
• There will eventually be a private depot server
• For now, hab and its components need internet access

Build Output

• By default, it’s a hart – a compressed tarball with some
metadata and a signature
• You can export to other formats, like Docker containers
• The hart itself it runnable

Runtime

• The hab runtime includes management, service
discovery, other features
• The habs in your application create a mesh so they can
talk to each other
• You can even update your application via the mesh
without restarting every application manually

Running a Hart

sudo hab start lnxchk/container_sched_backend
--peer 172.31.13.250 --topology leader
• The same hart runs on multiple distros – no need for other
packages
• Once hooked together, the supervisors will have a leader election
•  If instances move in or out of the mesh, a new election will occur
after a timeout
• Updates are persistent and stored in metadata on the hosts

   /hab/data/services

Updating Configuration at Runtime

• Update all or part of the configuration while the apps
are running
• Send the update to a member of the mesh and they will
all update

sudo hab config apply container_sched_backend.default 2
newconfig.toml

Supervisor Web Interface

• http://ip.add.re.ss:9631/services
• http://ip.add.re.ss:9631/census

Additional Features

• Healthchecks – can be customized for your app, and
travel in the hart
   https://www.habitat.sh/tutorials/sample-app/windows/add-health-

check-hook/

• Dynamic Updates – when a new version is uploaded to
the Depot in the “stable” channel, update running apps
   https://www.habitat.sh/tutorials/sample-app/windows/update-

app/

Shortcut for common platforms: Scaffolding

• Default core-built dependencies for common runtimes
• Ruby and Node so far

pkg_name=MY_APP
pkg_origin=MY_ORIGIN
pkg_version=MY_VERSION
pkg_scaffolding=core/scaffolding-ruby

https://www.habitat.sh/docs/concepts-scaffolding/

Join Us!

• On Slack!
   http://slack.habitat.sh

• Online! With Tutorials!
   https://www.habitat.sh/

• On Github!
   https://github.com/habitat-sh

• The sample app in this talk
   https://github.com/lnxchk/container_sched_backend

Try it out!
Share your story!
Get some swag!!
goo.gl/WrHQTU

Other References

• Summary on The New Stack
   https://thenewstack.io/chef-habitat-addresses-issues-moving-

containers-production

• Our YouTube Channel
   https://www.youtube.com/user/getchef

October 10 – 11, 2017
etc.venues Fenchurch St London

https://chef.io/summits
mandi@chef.io

