
Google SDN Peering: An Early 
Engagement Case Study
Murali Suriar, msuriar@google.com
On behalf of Google Technical Infrastructure and Network Infrastructure SRE

August 30, 2017



Who am I?

● Murali Suriar
● Seven years at Google*

○ Network Engineer, Dublin
○ SRE, London

■ Initially working on proxies/load balancing
■ Currently running SDN control systems

● @msuriar on Github, Twitter, IRC

* = minus a brief stint on a boat



Today's talk

● What is SDN?
● A brief history of SDN at Google
● An overview of Espresso (SDN internet peering)
● SRE early engagement with the Espresso dev team



What is SDN?



Traditional networking

● Common protocols and standards (mostly).
● Proprietary/vertically integrated implementations.



An aside - why hardware?

● IP networking all about packets per second (pps).
● Weird standards.



Planes of a switch/router



Planes of a switch/router ("swouter")

Control

Management

Forwarding/data



Planes of a switch/router ("swouter")

● Control plane scales with 
protocol/network 
complexity.

● Network vendors use 
long-term supported 
hardware.

● Long depreciation cycles 
lead to underpowered 
control plane.

Control

Management

Forwarding/data



The dream of SDN

● Create standard for 
programming the forwarding 
plane.

● Separate control plane from 
network devices.

ManagementControl

Forwarding
Forwarding

Forwarding
Forwarding



Complexities of SDN

● Need a new network to connect control and data 
plane together.

● Network engineers need to learn about running 
binaries and managing machines.

● Or sysadmins/SREs need to learn about networking.



New failure modes of SDN

● Less shared fate between control plane and data 
plane.

● Single controller outage has (potentially) large impact 
on data plane.

● Increased latency in reacting to some classes of 
failures.



A brief history of SDN at Google



B4
WAN

Interconnect

Andromeda 
NFV and network 

virtualization

Jupiter
Datacenter 
Networking

The Pillars of SDN @ Google



B4: [Jain et al, SIGCOMM 13] BwE: [Jain et al, SIGCOMM 15]

B4: Google's Software Defined WAN 



B4: [Jain et al, SIGCOMM 13] BwE: [Jain et al, SIGCOMM 15]

B4: From Copy Network to Business Critical

B4
 tr

af
fic

2012 — 2016



10.1.4/24

VNET: 5.4/16

VNET: 192.168.32/24

VNET: 10.1.1/24 Load Balancing

DoS

ACLs

VPN

NFV
Internal Network

Andromeda

ToR

Google Infrastructure Services

10.1.1/24

ToR

10.1.2/24

ToR

10.1.3/24

ToR



Watchtower

Saturn

Firehose 
1.1

Google Datacenter Network Innovation
And hardware scale that we could not buy 

18

Time

Ca
pa

ci
ty

Firehose 
1.0

Jupiter

4 Post

1.3Pb/s clusters 
in 2013



B4
WAN

Interconnect

Andromeda 
NFV and network 

virtualization

Jupiter
Datacenter 
Networking

The Pillars of SDN @ Google

Public
Internet?



B4
WAN

Interconnect

Andromeda 
NFV and network 

virtualization

Jupiter
Datacenter 
Networking

The Pillars of SDN @ Google

Espresso 
SDN for public 

Internet



Enter Espresso



Espresso in Context

B4

Jupiter Data Center
Google



Espresso in Context

B4

B2

Peering Metro

Jupiter Data Center
Google

Google



Espresso in Context

B4
Espresso

B2

Internet

Peering Metro

User

Jupiter Data Center
Google

Google



Cloud 1.0
Espresso

SDN
Peering

Router
Centric

Protocols

Espresso: Before and After

Local view
Connectivity first
Coarse fault recovery

Per-metro and global view
Application signals
Real-time optimization



Espresso Architecture Overview

Label-switched 
Fabric

BGP 
speaker

External Peer

Espresso 
Metro

Peering Fabric

eBGP Peering



Espresso Architecture Overview

Label-switched 
Fabric

Host
Host
Host
Host
Host

Host

Packet 
Processor

BGP 
speaker

External PeereBGP Peering

Espresso 
Metro

Labeled packets 
specify egress

Host
Host
Host
Host
Host

Peering Fabric



Espresso Architecture Overview

Label-switched 
Fabric

Host
Host
Host
Host
Host

Host

Packet 
Processor

Local
Control

Global Controller

BGP 
speaker

External PeereBGP Peering

Espresso 
Metro

Application Signals

Labeled packets 
specify egress

Host
Host
Host
Host
Host

Peering Fabric



SRE for Espresso



Complexities of Espresso

● Large set of distributed systems.
● Many teams, different skill sets.
● Massive, top to bottom change.
● How do we contain and direct all of this so we make 

progress?



Espresso team

● Cross functional team
○ Network engineers
○ SREs
○ Developers
○ Testers
○ ...



Espresso team

● Responsible for supporting Espresso from inception 
to production.

● Set up testing infrastructure.
● Set up job control, monitoring.
● Oncall when Espresso shipped its first bytes.
● Eventually spun down and handed off oncall to 

permanent teams.



Test/release infrastructure

● Unit tests on everything.
● Some software integration tests.
● Automated hardware integration tests.
● CD pipeline cutting a release every night from latest 

green commit and deploying to hardware testbeds.



Production environment

● Reused/adapted standard building blocks.
○ Borg
○ Chubby
○ PrometheusBorgmon

● Had a post lab, prod-parallel testbed which paged 
Espresso oncall.



"I have a question…"

"Do you know how to let a Borg job SSH into a production machine?"

"Yes. I'm not going to tell you how, though. What are you trying to do?"

(SSH is almost never used for system to system communication at 
Google; we prefer RPCs.)



"I have a question…"

"I want to save some binary data to disk, then log in, copy it off, and 
then get it into Dremel."

"So… you want to save some structured (ProtoBuf?) logs into Dremel."

"Yes."

(It turns out Google has an existing toolkit to solve precisely this 
problem.)



Monitoring/alerting

● Lots of possible points of 
failure:
○ Peering Fabric.
○ Packet processing on 

hosts.
○ Software (Local 

controller, BGP 
speakers).

○ Global control plane.
● How to tell what's broken?



Monitoring/alerting

● Lots of possible points of 
failure
○ Peering Fabric.
○ Packet processing on 

hosts.
○ Software (Local 

controller, BGP 
speakers).

○ Global control plane.
● How to tell what's broken?



Monitoring/alerting

"Network devices have counters everywhere. If we page on the drop 
counters, that'll catch all the failures we see with traditional peering 
devices?"

"Oooor… we could build some blackbox probing infrastructure to catch 
failures which don't show up in counters?"



Monitoring/alerting

● Built a couple of high signal, symptom based alerts
○ Black box prober, doing end to end test of control- 

and dataplane.
● Used lots of whitebox telemetry to help point to root 

cause.
○ ALL THE GRAPHS.



Monitoring/alerting

GFE

USPS 
(ACL)

Monitoring

1. Blackbox realtime monitoring of PF availability + encap + decap + GFE reachability.
2. Greybox realtime monitoring of pocket processor ACL: decap + ACL-is-blocking + ACL-is-permitting.
3. Passive loss/blackhole monitoring.

PFInternet B2 GFE

Packet 
processor

Monitoring



Introspection

● Alerting/monitoring tells you something is broken.
● How do find out what exactly is causing you to be 

paged?



Introspection tools

● Google has standard HTTP endpoints for debugging.
○ "Show me the important things about this binary."
○ "Packet processor, what do you know about 

192.0.2.1?"
● Custom traceroute-like tools for debugging dataplane.



What broke?

● Most common failure mode: control plane breakage.
● Example: Local controller OOM on new version.

○ No traffic impact. (Fail static.)
○ Caught in first production canary.
○ Added regression test.



What broke?

● SDN management.
● Example: accidentally disabled non-SSH access to 

Peering Fabrics.
○ No traffic impact. (Fail static)
○ Used SSH access to restore SDN management.
○ Added more conservative canarying for device 

management changes.



Comprehensibility

● Complex system needed an architecture diagram.
● Espresso architecture doc has:

○ All components.
○ What talked to what.
○ Links to individual design docs.
○ (Later) Who was oncall for what.



Oncall

● Everyone in Espresso team in the oncall rotation:
○ SREs.
○ Developers.
○ Network engineers.

● Some people never oncall before.
● Some people already oncall for other stuff.
● Needed to account for all of this in oncall practices.



Oncall

● Initially Espresso team oncall for all Espresso 
deployments.

● Then only for a couple of sites where we were testing 
new features.

● Eventually spun down and handed off to many 
existing teams.



Summary



What did early engagement get us?

● Dev familiarity with production.
○ When you're paged by a bug, you fix it faster.

● Broad knowledge across lots of disciplines.
● Significant design changes:

○ Reusing more production infrastructure.
○ Symptom based monitoring.



Lessons learned

● Design for testability.
● Reuse whatever you can.
● System architecture diagrams are great.
● Focus on a few, high signal, symptom based alerts.
● Lots of white box telemetry to aid with root causing.



Thank You!Thank You!


