
Rich Archbold
@rich_archbold
Director of Engineering
Intercom

Money is Cheap

Basic Execution is Easy

Threat from one of The Four
Talent is Scarce

Time well spent is when our top talent is
focused and productive solving only our most
important and differentiating challenges.

Save Time - Choose “Standard” Technology

Save Time - Outsource Undifferentiated Heavy-Lifting

Spend Time - Create Enduring Competitive Advantage

Save Time - Choose “Standard” Technology

Save Time - Outsource Undifferentiated Heavy-Lifting

Spend Time - Create Enduring Competitive Advantage

Save Time - Choose “Standard” Technology

Choose Boring Technology

Solve problems by constraining yourself, mostly but not
exclusively, to solving them with a small opinionated,
company-specific set of standard technologies, that
over time you become expert in. This will serve you
well in the long run.

Chose Standard Technology

Total Cost = ∑ (Operations Cost) - ∑ (Velocity Benefits)

Total Cost = ∑ (Operations Cost) - ∑ (Velocity Benefits)

Low Cost = ∑ (Easy & Cheap) - ∑ (Fast & Powerful)

Technology Intercom Standard 😎 Intercom Non-Standard 🤔

1 Programming
 Languages Ruby & JavaScript Java, Go, Python, etc.

2 Compute AWS EC2 instances in our VPC GCE, Azure, Heroku

3 RDMS AWS RDS Aurora MySQL AWS PostgreSQL, Native MySQL, Spanner

4 Key Value Store AWS DynamoDB MongoDB, Cassandra, Bigtable

5 Metrics, Monitoring AWS CloudWatch, Datadog,
Honeycomb Graphite, Librato, Prometheus

6 Queues & Streams AWS SQS & AWS Kinesis RabbitMQ, Kafka

7 Search Baremetal Elasticsearch AWS Elasticsearch, AWS Cloudsearch, Solr

8 Email Delivery Sparkpost AWS SES, PowerMTA, Postfix

9 Real Time Messaging Intercom Nexus Pubnub, Pusher

10 Messenger Intercom Messenger Layer.com

http://layer.com

Technology Intercom Standard 😎 Intercom Non-Standard 🤔

1 Programming
 Languages Ruby & JavaScript Java, Go, Python, etc.

2 Compute AWS EC2 instances in our VPC GCE, Azure, Heroku

3 RDMS AWS RDS Aurora MySQL AWS PostgreSQL, Native MySQL, Spanner

4 Key Value Store AWS DynamoDB MongoDB, Cassandra, Bigtable

5 Metrics, Monitoring AWS CloudWatch, Datadog,
Honeycomb Graphite, Librato, Prometheus

6 Queues & Streams AWS SQS & AWS Kinesis RabbitMQ, Kafka

7 Search Baremetal Elasticsearch AWS Elasticsearch, AWS Cloudsearch, Solr

8 Email Delivery Sparkpost AWS SES, PowerMTA, Postfix

9 Real Time Messaging Intercom Nexus Pubnub, Pusher

10 Messenger Intercom Messenger Layer.com

http://layer.com

Technology Intercom Standard 😎 Intercom Non-Standard 🤔

1 Programming
 Languages Ruby & JavaScript Java, Go, Python, etc.

2 Compute AWS EC2 instances in our VPC GCE, Azure, Heroku

3 RDMS AWS RDS Aurora MySQL AWS PostgreSQL, Native MySQL, Spanner

4 Key Value Store AWS DynamoDB MongoDB, Cassandra, Bigtable

5 Metrics, Monitoring AWS CloudWatch, Datadog,
Honeycomb Graphite, Librato, Prometheus

6 Queues & Streams AWS SQS & AWS Kinesis RabbitMQ, Kafka

7 Search Baremetal Elasticsearch AWS Elasticsearch, AWS Cloudsearch, Solr

8 Email Delivery Sparkpost AWS SES, PowerMTA, Postfix

9 Real Time Messaging Intercom Nexus Pubnub, Pusher

10 Messenger Intercom Messenger Layer.com

http://layer.com

Save Time - Choose “Standard” Technology

Save Time - Outsource Undifferentiated Heavy-Lifting

Spend Time - Create Enduring Competitive Advantage

There Is Surely Nothing
Quite So Useless as Doing
with Great Efficiency What
Should Not Be Done At All

There's a lot of undifferentiated heavy lifting that stands
between your idea and that success.

70% of your time, energy, and dollars go into the
undifferentiated heavy lifting and only 30% of your energy, time,

and dollars gets to go into the core kernel of your idea.

I think what people are excited about is that they're going to get
a chance they see a future where they may be able to invert

those two.

Jeff Bezos, Web 2.0 Summit, 2006

70% of your time, energy, and dollars go into the undifferentiated
heavy lifting and only 30% of your energy, time, and dollars gets to go

into the core kernel of your idea.

I think what people are excited about is that they're going to get a
chance they see a future where they may be able to invert those two.

Undifferentiated
Heavy-Lifting

Enduring
Competitive
Advantage

 The Industry 🙁 70% 30%

 Intercom 😎🦄🌈 40% 60%

Tier 1 - AWS
Tier 2 - Best-in-class Companies, public or late
stage startups (Stripe, Sparkpost, Datadog)
Tier 3 - Mid-stage Startups (Greenhouse, Keen IO,
VividCortex)
Tier 4 - Young Startups (Honeycomb, Foxpass,
Notion)

Save Time - Choose “Standard” Technology

Save Time - Outsource Undifferentiated Heavy-Lifting

Spend Time - Create Enduring Competitive Advantage

The things you own, end up owning you.

Technology Intercom Standard 😎 Intercom Non-Standard 🤔

1 Programming
 Languages Ruby & JavaScript Java, Go, Python, etc.

2 Compute AWS EC2 instances in our VPC GCE, Azure, Heroku

3 RDMS AWS RDS Aurora MySQL AWS PostgreSQL, Native MySQL, Spanner

4 Key Value Store AWS DynamoDB MongoDB, Cassandra, Bigtable

5 Metrics, Monitoring AWS CloudWatch, Datadog,
Honeycomb Graphite, Librato, Prometheus

6 Queues & Streams AWS SQS & AWS Kinesis RabbitMQ, Kafka

7 Search Baremetal Elasticsearch AWS Elasticsearch, AWS Cloudsearch, Solr

8 Email Delivery Sparkpost AWS SES, PowerMTA, Postfix

9 Real Time Messaging Intercom Nexus Pubnub, Pusher

10 Messenger Intercom Messenger Layer.com

http://layer.com

Theory in Action…

 Example 1 - Consolidate all RDMS to AWS RDS MySQL

Problem Cognitive and operational overhead of administering two DB technologies (AWS
RDS MySQL and AWS RDS PostgreSQL).

Success
Criteria

Reduce the amount of knowledge / expertise the maintain our system.
Simplify decision making when it comes to spinning up new services.

Decision Simplify decision making when it comes to spinning up new services.
Bet that, although AWS proprietary and incur vendor lock-in, it will be worth it.

Outcome
Awesome.
AWS Aurora. Got 5X throughput at a 30% cost reduction.
Happy to be more Awesome is coming.

 Example 2 - Scaling User Storage with AWS Aurora and AWS DynamoDB

Problem

1. Requires sustained and costly proactive maintenance
2. Configuration is rigid and hard to innovate upon
3. Inefficient to operate and expensive to scale
4. MongoDB is not “standard technology”

Success
Criteria

1. Easy and cheap to maintain, outsource undifferentiated heavy-lifting
2. Flexible configuration that is easy to iterate upon
3. Easy to scale, highly available
4. Built from “standard technology”

Decision Replace MongoDB with hybrid solution the uses both AWS Aurora and AWS
DynamoDB

Outcome
New solution is built from outsourced, Tier 1, “standard technology”.
Natively scalable.
90% reduction in $$$ cost and 3 engineers freed up to work on USP.

 Example 3 - Rebuild native iOS and Android Inbox in EmberJS

Problem

1. Multi-Platform support for Intercom Inbox v. expensive
• implemented 3 times (Java, Objective C and EmberJS)

2. Slow, infrequent, incomplete Native Mobile app updates
• big bang releases, slow/rigid app stores, and infinite long tail of app upgrades

Success
Criteria

1. Easier, cheaper, faster Inbox development and maintenance
2. Faster, more frequent, complete deployments

Decision Try out Ember engines to create web Inbox interface for iOS and Android app.

Outcome

Not so good / deferred
Poor communication and planning by Leadership
Net result - some learning and unsettled Mobile Engineers
Lessons Learned? People are harder and more important than tech strategy

Technologist
vs

Problem Solver

What’s the Prize?

The End

