Monitoring 101 THE BASICS

Theo Schlossnagle

CEO @Circonus Twitter: @postwait

Agenda

Monitoring is the action of observing and checking static and dynamic properties of a system.

- HEINRICH HARTMANN (http://I42.org/GwE)

Your System Is Larger Than Your "Systems"

Evolution of Web Monitoring

Evolution of Database Monitoring

Evolution of Systems Monitoring

Monitoring Is Sophisticated

Increased Telemetry Volume

Advances in Time Series Databases to store trillions of samples in a billion streams.

Advances in Stream
Analytics to handle
velocity at scale for
real-time analysis and
alerting.

More Valuable Operational Questions

Data Science is the future.

Increased volume mandates computer assistance where "ops dashboards" once worked.

Most sophisticated modeling: stats, machine learning, Al, etc.

Increased Organizational Velocity

Systems are decoupled, distributed and changing faster.

Understanding overall systems behavior is like looking at sand dunes.

Service Level Objectives

SLOS ARE WHAT DRIVES SRES

SLO: usually based on percentiles

- ► E.g. 95th percentile less than 10ms
 - "simply" 95% of all samples should 10ms or less, 1% can be arbitrarily bad
- Not "simple"
 - Calculated over what period of time (or worse, number of samples)?
 - Why 95% and not 99% or 99.9% or 99.34860943%?
 - ▶ Why 10ms?
- The tragedy of the not-a-histogram histogram:
 - ▶ There are no right answers, and rarely good ones.

Median Latency Over 5m Stepping Window

Summary Histogram 30days and 36mm samples

Time-series Histogram 30days and 36mm samples

Time-series Histogram 30days and 36mm samples

Time-series Histogram 30days and 36mm samples

Average Latency Over 5m Stepping Window

Summary Histogram 2days and 1.6mm samples

Latency Over 5m Stepping Window

Latency Over 5m Stepping Window Stepping Window Stepping Steppin

p(95) Latency Over 5m Stepping Window

p⁻¹(10ms) Latency Over 5m Stepping Window

p⁻¹(50ms) Latency Over 5m Stepping Window

Time Matters

The time quantum you use to assess is your minimum window of failure.

Uncertainty Matters

You will certainly want to revise your goals, likely in all parametric space.

Histograms Matter

You cannot manage percentile-based SLOs at scale without histograms.

Do not measure rates.

You can derive the rate of change over time at query time.

Monitor outside the tech stack.

Your tech stack would not exist without happy customers and a sales pipeline. Monitor that which is important to the health of your organization.

Do not silo data.

The behavior of the parts must be put in context.

Correlating disparate systems and even business outcomes is critical.

Value observation of real work

over the measurement of synthesized work.

Synthesize work to ensure function

for business critical, low-volume events.

Percentiles are not histograms.

For robust SLO management you need to store histograms for post-processing.

History is critical;

not weeks or months, but years of detailed history.

Capacity planning, retrospectives, comparative analysis, and modelling all rely on accurate, high-fidelity history.

Alerts require documentation.

No ruleset should trigger an alert without: human-readable explanation business impact description remediation procedure escalation documentation

Be outside the blast radius.

The purpose of monitoring is to detect changes in behavior and assist in answering operational questions.

Something is better than nothing.

Don't let perfect be the enemy of good.

You have to start somewhere.

Thank You!