
"Capacity Prediction" instead of "Capacity Planning": 
How Uber uses machine learning to accurately forecast 
resource utilization
 Rick Boone, Senior Software Engineer II, Uber Capacity Engineering



Capacity Planning?

● Reliability: A service or platform will not degrade or fail due to 
having too few resources

● Efficiency: A service or platform will not be “wasteful” due to 
claiming too many resources (and not using them) 

These are critical for the success 
of any software-based company, 
in both the short and long-term



Capacity Planning is hard

○ Software is unpredictable
○ Distributed environments are volatile and 

complex
○ Engineers aren’t psychics
○ “Jedi” knowledge doesn’t scale

Capacity Planning is important...but it’s hard to do at scale

How can we get it right?



Predicting, not Planning

Predicting 
● Empirical
● Repeatable
● Scalable
● Grounded in data
● Expectation of success (with 

measurable confidence)

● Fuzzy
● Localized
● No measure of expected result
● “Plans are made to be broken”



#Goals

“Knowledge about how a service or platform behaves under all conditions 
and demands”

“Knowledge of Uber’s (and therefore, the service’s) future conditions and 
demands”



Business actions drive hardware usage 

The behavior and performance of our services is directly driven by and tied to our key 
business metrics (“ingresses”), such as active trips, riders and drivers.

Our solution is built upon a simple, fundamental concept:



Demand -> Consumption

Timeseries plot of Ingress (Riders) vs CPU



Demand -> Consumption

Scatter plot of Ingress vs CPU



Translational Model

A predictive model to represent behavior and utilization



Which business metric?

Every service is driven by a different ingress/work flow. 
How can we choose the right one? 



What’s the relationship?

How can we mathematically represent this relationship between Ingress and 
CPU?

Machine Learning and statistical modeling are perfect for this



What’s the relationship?

A linear regression for ingress onto CPU. 
(Minimization performed with a genetic algorithm, though we started with gradient descent.)

Wait. Something’s 
wrong...



Capacity Safe

A linear -> Quantile regression (@99%) for ingress onto 
CPU

“Built Capacity Safe™”

Y = mX + b
(CPU = m * Ingress + b)

We can now store (m, b) in a database to 
represent a service

 

We also now have empirical 
accuracy scores (sMAPE, 
MAE) for our predictions, 
which can also be stored. 



Test, test, test

Performance against a test set



#Goals

“Knowledge about how a service or platform behaves under all conditions 
and demands”

“Knowledge of Uber’s (and therefore, the service’s) future conditions and 
demands”

Done! 
(Ingress -> Predicted CPU 

model)

How can we represent 
this?



One more piece...

What will Uber demand/ingresses look like in the future? 

We have a data science team 
which provides accurate, 

long-term demand forecasts of 
our business metrics

(These are not Uber’s actual business metrics. Of course. :) )



Predictions!

Computationally-built CPU predictions for a service over the next few months!



Please, try this at home!

1. Consider what drives your services resource consumption
● Forecasted metrics are best, but not required
● Use empirical and repeatable processes to confirm relationship

○ Correlation analysis, Regularization w/ Feature Selection, Feature 
elimination

● Stay away from service RPS alone

2. Gather data and build aligned datasets
● If it’s not available now, see if you can begin to ingest and store it
● Infrastructure data is VERY valuable

3. Build a predictive model via machine learning methods
● Many types of models are viable

○ Regressions, Decision Trees, Neural Nets
● Many off-the-shelf options are available

○ Scikit-Learn, R Libraries, TensorFlow….
● Models are “Build periodically, consume often” -- use your laptop to bootstrap!

4. Store the weights, accuracy scores and metadata
● Using Cassandra to store our model data

5. Apply the inputs
● Adhoc reports and analysis during bootstrapping



THANKS!!

Email: kineticrick@gmail.com
LinkedIn: https://www.linkedin.com/in/kineticrick/

Many thanks to the following engineers + data scientists:

Niels Lindgren
Scott Phung

Chen Lin
&

Calvin Worsnup 

mailto:kineticrick@gmail.com
https://www.linkedin.com/in/kineticrick/

