CHAOS ENGINEERING BOOTCAMP

TAMMY BUTOW, GREMLIN
SRECON AMERICAS 2018

TAMMY BUTOW
SRE, GREMLIN
CAUSING CHAOS IN PROD

SINCE 2009

@TAMMYBUTOW
@GREMLINING

GREMLIN.COM

THANK YOU FRIENDS!

ANA MEDINA KIM BANNERMAN MATT WILLIAMS

UBER, GOOGLE, DATADOG,
UDESTROY KUBERNETES ALL THE THINGS

CHAOS ENGINEERING SLACK
JOIN THE #SRECON18 SLACK CHANNEL

chaosengineering © [

® Ly] Conmlade:
2ltenhiony sy fror for e cus regsuns, Marrg daoes v \‘-unm.‘:., At bt oo of thel gang un
Tebboo Dol porfuape o

o All Threads MadracKriss v
Yeah thats wery we thought or cark wesrkness

wiow tharke rrallar, you canncd Ciscaent b dinactly, uny Ly i cirect e mant
Gr Elwk Zevn
| otton «o v
e Taevswaork nozeterd, s s wrovappicatie to Thats Eginesing 1'd cot A agle o5 the peamibzre in thi cpoce. Iclomed
by Shinin = Gamne

¢ kamng U o
& randem Leokos D wes hovee 3 rsos n et vot
Taboas sooms e ¢ gocdidia o start a Wik, mandeing ¥ comebody toed McdW i up comewhe 2l peode vaolk stant

oo nees
Adumzing ther bran ovia it ar e

' pgunn
Pgunm o L0 E

cl Maluraly s Ccawor WeComin 1o Qeing wmaing 10 Uie abiirect Use e coraete
S NS

slinrsnreniy _ﬂ otton w00 0 .

P Wewe zot a bst of pood rescuroes incur hefo dos vziopruminoomtrescerczs), The genera chaos cepnenng tcobemateral won his
¢ Ners
) s otofzcodl ks | tebeve

d capacry_plirning peune *1
thsangy _ruansgumenl 2h oo

thans_peocer

Cowifiivney

Aleiid s A j chrisang 10

¢ hadvarc 1 jcived Agsined

¢l Lmanage e

¢ ol I + |
Mam Uremaze 4

https://slofile.com/slack/chaosengineering

THE CHAOS
BOOTCAMP

1. DISCOVER AND EXPLORE THE PRACTICE OF CHAOS ENGINEERING

2. IMMERSE YOURSELF IN A DISCUSSION ON CHAOS ENGINEERING

3. DELVE INTO CHAOS ENGINEERING ON DISTRIBUTED SYSTEMS

4 EXPLORE THE APPLICATION OF CHAOS ENGINEERING IN YOUR COMPANY
5. LEARN HOW TO CRAFT YOUR OWN CHAOS ENGINEERING EXPERIMENTS
6. LEARN TECHNIQUES TO EVALUATE YOUR CHAOS ENGINEERING PRACTICE

THE CHAOS
BOOTCAMP

4+ LAYING THE FOUNDATIONS (2:00 - 3:00)

- CHAOS ENGINEERING DISCUSSION (3:00 - 3:30)

- AFTERNOON BREAK (3:30 - 4:00)

STRIBUTED SYSTEMS CHAOS (4:00 - 4:30)

HAOS ENGINEERING IN YOUR COMPANY (4:30 - 4:45)
RAFT YOUR OWN EXPERIMENTS (4:45- 5:00)

- FEEDBACK AND EVALUATION TECHNIQUES (5:00-5:15)
- ADVANCED TOPICS & Q + A (5:15 - 5:30)

PART |: LAYING THE FOUNDATION

WHAT IS CHAQOS
ENGINEERING

THOUGHTFUL PLANNED EXPERIMENTS
DESIGNED TO REVEAL THE
WEAKNESSES

IN OUR SYSTEMS.

WHY DO DISTRIBUTED
SYSTEMS NEED CHAOS?

DISTRIBUTED SYSTEMS HAVE
NUMEROUS SYSTEM PARTS.

HARDWARE AND FIRMWARE FAILURES
ARE COMMON. OUR SYSTEMS AND
COMPANIES SCALE RAPIDLY

HOW DO YOU BUILD A RESILIENT
SYSTEM WHILE YOU SCALE?
WE USE CHAOS!

FULL-STACK
CHAOS INJECTION

YOU CAN INJECT CHAQOS AT
ANY LAYER TO INCREASE
SYSTEM RESILIENCE AND
SYSTEM KNOWLEDGE.

WHO USES CHAOS
ENGINEERING?

. NETFLIX

. DROPBOX

. GOOGLE

. NATIONAL AUSTRALIA BANK
5. JET

WHAT ARE COMMON EXCUSES TO NOT
USE CHAOS ENGINEERING?

HANDS-ON TUTORIAL
(LET’S JUMP IN!)

NOW IT IS TIME TO CREATE

CHAOS. WE WILL ALL BE
DOING A HANDS-ON
ACTIVITY WHERE WE INJECT
FAILURE.

TIME TO USE YOUR SERVERS

IN GROUPS OF 3,

SSH INTO YOUR

KUBERNETES CLUSTER USING THE
CHAOS USER

VISIT YOUR PRIMARY IN
YOUR BROWSER (PORT 30001)

YOU MUST BE MEASURING METRICS
AND REPORTING ON THEM TO IMPROVE

YOUR SYSTEM RESILIENCE.

CHAOS WITHOUT MONITORING IS FUTILE

THE LACK OF PROPER MONITORING IS NOT

USUALLY THE SOLE CAUSE OF A PROBLEM,

BUT IT IS OFTEN A SERIOUS CONTRIBUTING
FACTOR. AN EXAMPLE IS THE NORTHEAST

BLACKOUT OF 2003.

COMMON ISSUES INCLUDE: »
+ HAVING THE WRONG TEAM DEBUG g
+ NOT ESCALATING N

+ NOT HAVING A BACKUP ON-CALL

Northeast blackout of 2003

From Wikipedia, the free encyclopedia

The Northeast blackout of 2003 was a widespread power outage that occurred throughout parts of the

Northeastern and Midwestern United States and the Canadian province of Ontario on Thursday, August 14, 2003,

just after 4:10 p.m, EOT,I"]

Some power was restored by 11 p.m. Many others did not get their power back until two days later. In more
remote areas it took nearly a week to restore power.'2) At the time, it was the world's second most widespread
blackout in histary, after the 1899 Southern Brazil blackout.®ll¥! The outage, which was much more widespread
than the Northeasl! Blackoul of 1965, alfecled an estimated 10 million people in Onlario and 45 million people in
aight L).S. states.

The blackaut's primary cause was a software bug in the alarm system at a control rcom of the FirstEnergy
Corporation, 'ocated in Ohio. A lack of alarm left operalors unaware of the need to re-distribute power after
overloaded lransmission lines hit unpruned foliage, which triggered a race condilion in the conlrol software. Whal
would have been a manageable local blackout cascaded into massive widespread distress on the €leclric grid.

Contents [show]

Immediate impact |edit)

According to the New York Independent System Operator (NYISO) - the ISO rasponsible for managing the New
York slate power grid — a 3,500 megawalt power surge (lowards Ontario) affected the transmission gricd at
4:10:39 p.m. EDT.1®

W

This image shows states and provinces that
experienced power outages. Not all areas within
these pclitical boundaries were affedd::d.

A LACK OF ALARMS LEFT
OPERATORS UNAWARE OF THE
NEED TO RE-DISTRIBUTE POWER
AFTER OVERLOADED
TRANSMISSION LINES HIT
UNPRUNED FOLIAGE.

THIS TRIGGERED A RACE
CONDITION IN THE CONTROL
SOFTWARE.

CASE STUDY:
KUBERNETES SOCK SHOP

. UNDERSTAND SYSTEM
. DETERMINE SLAs/SLOs/KPIs

. SETUP MONITORING

. INJECT CHAOS

. MEASURE RESULTS

. LEARN

. INCREASE SYSTEM RESILIENCE

CHAOS TYPES

UNKNOWN

KNOWN UNKNOWN

LET’S INJECT
KNOWN CHAOS

1. GO TO YOUR CHAOS REPO

$ su - experiments
$ cd chaos_engineering_bootcamp

LET’S INJECT
KNOWN CHAOS

$ Is chaos_engineering_bootcamp
$ chmod +x chaos_cpu.sh
$./chaos _cpu.sh

$ top

18 min, 1 user load average: 28.42, 12.45, 5.5
., 33 running. 233 sleeping, ® stopped, 8 zombie
9.9 us, 2.8sy, 0.0 ni 8.8 id, 8.8 wa, 9.8 8.0 s 8.3 s
4646532 total, 316792 free, 2351386 used, 1378368 buff/cache
® total, free used

chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos
chaos

rogs

e R B R R B B R BB BE BB E-BREB-B B BB BB B BB BRB-B-B-B-]
PP OPOPPIOPIPDODIOPOPODDPOOOTOTPPITOTDDODODDDDODOEO®

OV DENIITTITITNTOTNNNTOTNNNVOVOVLOVVLOLVLVOLOVVLVLVVLVONNN

CHAOS IN DATADOG

Welcome, Tammy! JEECIEFTIER R You are 83X done serting up. You have 12 days left in your trial. Upgrade

ﬂ System - Overview
DATADOG “

$scope hostkube-taremwy *r 6

SSCOpe (4) Show! Ah The Past Hour

LET’S STOP THE
KNOWN CHAOS

1. KILL WHAT | RAN

$ pkill -u experiments

lasks: 200 total, 2 running, 198 sleeping, @ stopped, @ zombie

BLpu(s): 4.9us, 2.6 sy 8.0 ni, 91.8 id, 0.2 wa, 8.8 hi, 0.2 51, 0.3 st
KiB Mem : 4846532 total, 344328 free, 2322212 used, 1379992 buff/cache
KiB Swap: ® total, [ree, O used, 1416592 avail Men

PID USER PR NI VIRT SHR S %CPU %ME TIME+ COMMAND
8503 root 20 0 463572 96832 42928 S 6.0 2.2 1:10.34 kubelet
8781 root 20 8 164668 76144 41768 R 3.6 - 8:31.37 kube-controller
8975 root 20 0 178744 138524 46524 S 2.0 3, 0:26.85 kube-apiserver
1479 root 20 0 1436024 8C468 29960 ¢ Tasd e 3:12.67 dockerd
13924 999 20 @ 0952880 59340 27772 ¢ 1. 5 0:85. mongod
g835 root 20 g 10.6045g 4.148 g3b : 1.¢ B C $.81 étca
145508 999 20 C 2978238 0.6 moNngod
9064 root 20 : 49028 Kube -proxy
/7 root 20 : 6 rcu sched
1661 root 20 containerg
1931 dd-agent 20 trace-agent
1938 dd-agent 20 python
13370 99S 20 mongod
13684 18681 20 java
14680 10061 20 node
20766 chaos 20 top
root 20 systend
root 20 kthreadd
20 ksoftirqd/8
0 kworker/0:8H
20 rcu_bh
rt

WV

Vi v

Co

~J

o Wm
-
J
®

G O ¢
o

(')
o

Al

- ¢

8
2
1
9

Wy VI

U LD e
owm
w M

N
v

) D M W W W W W W W WS

ViV um ’: w
L

J

migration/0
watchdog/€
watchdog/1
migration/l1
kKsoftirqd/1
kworker/1:0
kworker/1:0H
kdevtnpfs
netns

pert

VI UV DT WUY B

Viubnm vy

v

DATADOG MONITORING

Your infrastructure

WHAT KIND OF CHAOS
CAN YOU INJECT?

'L MYSQL PRIMARY
'L MYSQL REPLICA
_L THE MYSQL PROXY

HOW DO WE MAKE
MYSQL RESILIENT
TO KILLS?

WE USE SEMI SYNC, GROUP
REPLICATION AND WE CREATED A
TOOL CALLED AUTO REPLACE TO
DO CLONES AND PROMOTIONS.

CHAOS CREATES RESILIENCE

s@o
\ <7

INJECT CHAOS IN YOUR SYSTEM

WHAT TYPES OF CHAOS DID YOU INJECT?
WHAT WAS YOUR HYPOTHESIS?

THE CHAOS
BOOTCAMP

+ LAYING THE FOUNDATIONS (2:00 - 3:00)

4+ CHAOS ENGINEERING DISCUSSION (3:00 - 3:30)

- AFTERNOON BREAK (3:30 - 4:00)

STRIBUTED SYSTEMS CHAOS (4:00 - 4:30)

HAOS ENGINEERING IN YOUR COMPANY (4:30 - 4:45)
RAFT YOUR OWN EXPERIMENTS (4:45- 5:00)

- FEEDBACK AND EVALUATION TECHNIQUES (5:00-5:15)
- ADVANCED TOPICS & Q + A (5:15 - 5:30)

PART ll: CHAOS DISCUSSION

THE CHAOS
BOOTCAMP

CHAOS ENGINEERING DEBATE TIME

4 FOUR VOLUNTEERS
4 TWO TEAMS - 1 TEAM IS FOR, 1 TEAM IS AGAINST

4 TOPIC: “EVERY COMPANY SHOULD BE DOING CHAOS ENGINEERING”
4 EACH PERSON GETS A GO AND SPEAKS FOR 2 MINS MAX
4 WE ALL VOTE ON A WINNER (APPLAUSE-O-METER)

THE CHAOS
BOOTCAMP

+ LAYING THE FOUNDATIONS (2:00 - 3:00)

+ CHAOS ENGINEERING DISCUSSION (3:00 - 3:30)

+ AFTERNOON BREAK (3:30 - 4:00)

STRIBUTED SYSTEMS CHAOS (4:00 - 4:30)

HAOS ENGINEERING IN YOUR COMPANY (4:30 - 4:45)
RAFT YOUR OWN EXPERIMENTS (4:45- 5:00)

. FEEDBACK AND EVALUATION TECHNIQUES (5:00-5:15)
. ADVANCED TOPICS & Q + A (5:15 - 5:30)

30 MIN AFTERNOON BREAK

3:30 - 4:00

32 N\l
&*(W/

1

THE CHAOS
BOOTCAMP

+ LAYING THE FOUNDATIONS (2:00 - 3:00)

+ CHAOS ENGINEERING DISCUSSION (3:00 - 3:30)

+ AFTERNOON BREAK (3:30 - 4:00)

+ DISTRIBUTED SYSTEMS CHAOS (4:00 - 4:30)

- CHAOS ENGINEERING IN YOUR COMPANY (4:30 - 4:45)
. CRAFT YOUR OWN EXPERIMENTS (4:45- 5:00)

. FEEDBACK AND EVALUATION TECHNIQUES (5:00-5:15)
. ADVANCED TOPICS & Q + A (5:15 - 5:30)

PART Ill: DISTRIBUTED SYSTEMS CHAOS

CHAOS MONKEY

YOU SET IT UP AS A CRON JOB THAT CALLS
CHAOS MONKEY ONCE A WEEKDAY TO

CREATE A SCHEDULE OF TERMINATIONS.

HAS BEEN AROUND FOR MANY

YEARS! USED AT BANKS, E-COMMERCE
STORES, TECH COMPANIES + MORE

ﬂ Deb Bakshiyev

Chaos Monkey is a service that randomly terminates VM instances and
containers-these frequent failures promote the creation of resilient services.
Chaos Monkey 2.0 is tightly integrated with Spinnaker: it relies on the
Spinnaker APIs to terminate instances, retrieves deployment intormation

from Spinnaker, and is configured using the Spinnaker UL

Here, I'll walk you through setting up and running Chaos Monkey on Google

Compute Engine (GCE).

https://medium.com/continuous-delivery-scale/running-chaos-monkey-
on-spinnaker-google-compute-engine-gce-155dc52f20ef

Chaos Monkey

LDocs » Home) Edit on GitHub

Configuration file format
Configuring be havior via Spinnaker
Decryptos

Lrror counter

l"?Tb'-' tod ""III'TF

Outage checker

p-l” ' ; :' K -!”y

Running tests Chaos Maenkey is responsible for randomly terminating instances in production to ensure that
lermination behavior engineers implement the'r services to be resil‘ent to instance failures.

lracker

Vendoring d See how to deploy for instructions on how to get up and runring with Chacs Monkey.
Yenaoring deperdences

Once you're up and running, see conhguring behavior via Spinnaker for how users cancustomize the

behavior of Chaos Monkey for their apps.

https://netflix.github.io/chaosmonkey/

Spin na ker Concepts Setup Guides Reference Community Blog,

Continuous Delivery for Enterprise

Fast, safe, repeatable deployments

GETSTARTED INSTALL LATEST

Spinnaker is an open source, multi-cloud continuous delivery
platform for releasing software changes with high velocity and

confidence.

https://www.spinnaker.io/

CHAOS KONG

TAKES DOWN AN ENTIRE AWS REGION.
NETFLIX CREATED IT BECAUSE AWS
HAD NOT YET BUILT THE ABILITY TO
TEST THIS.

AWS REGION OUTAGES DO HAPPEN!

CHAQOS FOR
KUBERNETES

ASOBTI, AN ENGINEER @ BOX CREATED
https://github.com/asobti/kube-monkey

IT RANDOMLY DELETES KUBERNETES PODS
IN THE CLUSTER ENCOURAGING AND
VALIDATING THE DEPLOYMENT OF

FAILURE-RESILIENT SYSTEMS.

SIMIAN ARMY

A SUITE OF TOOLS FOR KEEPING
YOUR CLOUD OPERATING IN TOP
FORM. CHAOS MONKEY IS THE FIRST
MEMBER. OTHER SIMIANS INCLUDE
JANITOR MONKEY & CONFORMITY

MONKEY.

https://github.com/Netflix/SimianArmy

GREMLIN INC

GREMLIN IS BUILDING A
CHAOS ENGINEERING PLATFORM.
FIRST COMPANY FOUNDED TO DO THIS.

RUN GREMLIN AGENTS ON YOUR

HOSTS OR IN CONTAINERS.

11 PRE-BUILT ATTACKS.

SCHEDULE ATTACKS WITH THE Ul, APl OR CLI.

GREMLIN.COM
@GREMLININC

LET’S GO BACK IN TIME TO LOOK AT
WORST OUTAGE STORIES WHICH

THEN LED TO THE INTRODUCTION OF
CHAOS ENGINEERING.

CHAOS @
DROPBOX

DROPBOX'S WORST OUTAGE EVER

SOME MASTER-REPLICA PAIRS WERE IMPACTED WHICH
RESULTED IN THE SITE GOING DOWN.

https://blogs.dropbox.com/tech/2014/01/outage-post-mortem/

CHAOS @ DROPBOX

1. CHAOS DAYS
2. RACK SHUTDOWN
3. SERVICE DRTSs

QUICK
THOUGHTS

SO MANY WORST OUTAGE STORIES ARE THE DATABASE.

| LEAD DATABASES AT DROPBOX & WE DO CHAOS.

FEAR WILL NOT HELP YOU SURVIVE “THE WORST OUTAGE".
DO YOU TEST YOUR ALERTS & MONITORING? WE DO.

HOW VALUABLE IS A POSTMORTEM IF YOU DON'T HAVE
ACTION ITEMS AND DO THEM? NOT VERY.

UBER'S WORST OUTAGE EVER:

1
2
3
4
5
6

. MASTER LOG REPLICATION TO S3 FAILED

. LOGS BACKED UP ON PRIMARY

. ALERTS FIRE TO ENGINEER BUT THEY ARE IGNORED
. DISK FILLS UP ON DATABASE PRIMARY

. ENGINEER DELETES UNARCHIVED WAL FILES

. ERROR IN CONFIG PREVENTS PROMOTION

— Matt Ranney, UBER, YOW 2015

Scaling Uber with Matt Ranney

December 4,2015 | in , , | 0 |

» 0000 0000 WD) EE—

Podcast: Play in new window |

“If you can make a system that can survive this
random failure testing, then you will more or
likely survive whatever other chaotic conditions
exist.’

Uber is a transportation and logistics company that manages many

aspects of its ride-sharing services through mobile apps and distributed

technology. Uber faces unique challenges in rapidly scaling its services internationally, and at one point
increased its developer headcount from 200 to over 1000 in less thanayear.

Matt Ranney is the Chief Systems Architect at Uber and was previously a founder and CTO of Voxer. At
QCon San Francisco, he gave a talk called

CHAOS @ UBER

+ UBER BUILT UDESTROY TO SIMULATE FAILURES.
+ DIDN'T USE NETFLIX SIMIAN ARMY AS IT WAS AWS-CENTRIC.

+ ENGINEERS AT UBER DON'T LIKE FAILURE TESTING (ESP. DATABASES)
THIS IS DUE TO THEIR WORST OUTAGE EVER:

— Matt Ranney, UBER, YOW 2015

CHAOS @
NETFLIX

SIMIAN ARMY CONSISTS OF SERVICES + CHAOS MONKEY
(MONKEYS) IN THE CLOUD FOR + JANITOR MONKEY

GENERATING VARIOUS KINDS OF + CONFORMITY MONKEY
FAILURES, DETECTING ABNORMAL

CONDITIONS, AND TESTING THE

ABILITY TO SURVIVE THEM. THE GOAL

IS THE KEEP THE CLOUD SAFE, SECURE

AND HIGHLY AVAILABLE.

CHAOS @
GOOGLE

GOOGLE RUN DRTs AND HAVE BEEN FOR MANY YEARS

CHAOS @
TYPESAFE

“"RESILIENCE HAS TO BE DESIGNED. HAS TO BE TESTED. IT'S

NOT SOMETHING THAT HAPPENS AROUND A TABLE AS A SLEW
OF EXCEPTIONAL ENGINEERS ARCHITECT THE PERFECT
SYSTEM. PERFECTION COMES THROUGH REPEATEDLY TRYING

TO BREAK THE SYSTEM”

— VICTOR KLANG, TYPESAFE

INTRODUCING CHAOS IN A
CONTROLLED WAY WILL RESULT IN
ENGINEERS BUILDING
INCREASINGLY RESILIENT
SYSTEMS.

HAVE | CONVINCED YOU?

BUILDKITE

DECIDED TO REDUCE DATABASE CAPACITY IN AWS. RESULTED
IN AN OUTAGE AT 3:21AM. PAGERDUTY WAS MISCONFIGURED
AND PHONES WERE ON SILENT.

NOBODY WOKE UP DURING THE 4 HOUR OUTAGE.....

STRIPE

“A DATABASE INDEX OPERATION RESULTED IN 90 MINUTES
OF INCREASINGLY DEGRADED AVAILABILITY FOR THE STRIPE

APl AND DASHBOARD. IN AGGREGATE, ABOUT TWO THIRDS
OF ALL APl OPERATIONS FAILED DURING THIS WINDOW.”

https://support.stripe.com/questions/outage-postmortem-2015-10-08-utc

OUTAGES
HAPPEN.

THERE ARE MANY MORE YOU CAN READ ABOUT HERE:

https://github.com/danluu/post-mortems

PART IV: CHAOS ENGINEERING IN

YOUR OWN COMPANY

PART V: CRAFT YOUR OWN

CHAOS ENGINEERING EXPERIMENTS

PART VI: FEEDBACK AND

EVALUATION TECHNIQUES

PART VIi: ADVANCED CHAOS + Q & A

CHAOS ENGINEERING FOR
DATABASES

+» GOOD TO USE:
+ MYSQL

* ORCHESTRATOR
* GROUP REPLICATION
* SEMI SYNC

https://github.com/github/orchestrator

<> with @ by GitHub

O3

orchestrator

Cluslers ~

rodunce 2°° 1:X908

S8 STATEMENT

iralencs a0 200

85 STATEMENT

IR0 18 »A0

26 51AaTEMENT D Ao on g

J PEENE-LOU SO

L

846 STATTURNT

Authored by Shlomi Noach at GitHub. Previously at Booking.com and Outbrain

https://githul ithub/orcl

GO CLIENT TO THE
CHAOS MONKEY REST
API

THIS PROJECT WAS STARTED FOR THE PURPOSE OF
CONTROLLED FAILURE INJECTION DURING
GAME DAYS.

https://github.com/mlafeldt/chaosmonkey
go get —u github.com/mlafeldt/chaosmonkey/1l1ib

Chaos Lemur

This project is a self-hostable application to randomly destroy virtual machines in a8 BOSH-managed environment, as
an aid to resilience testing of high-availability systems. Its main features are:

Triggers on a user-defined schedule, selecting O or more VMs to destroy at random during each run.
Manual triggering of unscheduled destroys.

Per-deployment and per-job probabilities for destruction of member VMs.

Optional blacklisting of deployments and jobs to protect their members from destruction.

Runs against different types of |laaS (e.g. AWS, vSphere) using a small infrastructure API.

Optionally records activities to DataDog.

Although Chaos Lemur recognizes deployments and jobs, it is not possible to select an entire deployment or job for
destruction. Entire deployments and jobs will be destroyed over time by chance, given sufficient runs.

https://github.com/strepsirrhini-army/chaos-lemur

INDUSTRY + ACADEMIA COLLABORATION

Monkeys in Lab Coats: Applying Failure Testing Research @Netflix QCon

m by Peter Alvaro, Kolton Andrus on War 24, 23°6. Doasss NOTICE: The ruxt QCon i in New York Jun 26-39, 2017, /o wl
L])= Rl W Rewd tatne

-

[otwrprine Sufrnare Develagmant Cammuw ity

Monkeys in Lab Coats

Applied Failure Testing Research at

)

Dowaload MP3 | Slides | Android app

Summary
Tha authors present (heir caparence n collaboration N E I F L I X
between Nndustry and academin, descriting baw a "2

Idan” = Ineage-driven laull necion - evoved from 2

theasiesl moeded nia an automsdad fdure leshing

system hat leverages Netfite's state -of-the-ant fauk .

In@acion snd trecing Infrastruciunas Bio
Kotton Andras |5 the ‘oundar of Cremiin inc, He 15 pessionate about buliding resiliert
systnms. prmanly as it lefs hm beeak things for fan and profe. Peter Alvar is an
Assistant Pratassor of Coemaitar Ssenca at o Lnuarsty of Calfornia Santa Cnar
He i3 the croecr f the Ceda us language ard co-crastor of 1hg Eloom lenguage,

DISORDERLY LABS

Disorderly Labs

Ones of the advantages of baing discrderly is that ons is constantly making exciting discovanes, - AA. Milne

Research

Distributed systems are ubiquitious, but they remain notoricusly difficult to reason about and proegram. Our research at Disorderly Labs operates
at the intersection of distributed systems, data management, pregramming languages and formal verification. We build languages, models and
tools to help tame the funcamental complaxity of distributed programming.

DISORDERLY LABS

Lineage-driven Fault Injection

Peter Alvaro
UC Barxalay
palvaro@cs.berkeley.edu

ABSTRACT

Fodilure is alwass an opoan; in largs weals dats managemeant <ys
tems, it s practically s ceneiny. Fault=olaaal peotocols sad com-
poacaols ane poluciously @ffoult 1w lmplemor. and debug. Worse
alilly shoscung eaiating el Wisisoes machuuizons wnd inkexoaling
thern coerzctly o complex sy ¥ers remains i art formn, end pro-
grooeeers hove fror 100ks to assise thex,

W proooses 2 noved appeasch lor discoveriog bugs in fwlaolerar
data eranapemont syaoms: avage-deives foudy ingection. A lincage-
dnver feull mpecior reusons dactraly fnoun coerect syslom oul
mmes m dmemmine whether fllores In the execurioe oonld hae
peevented the ouscome. We present NMOLLY, a proenty pe of lineage-
driver Bxult injecticn s exploits a novel combanasbion of data lin-
cage teehnigees from e Jasbase lwrdtarne aod stee of theart
sadstighikoy eaeg. If Cagiy-nierarce Sags exia for a l’\.‘“:lllj'
configuratior, MOLLY finds them mmpidly, in many cases wsing an
neder of magnitude fewer execunans than =wndom fault mjecthion,
Otheravise, MULLY cectifias shar the code 15 bug free for that con
feg sty

Joshua Rosen
UC Barkelay
rosenville@gmail.com

Joseph M. Hellerstein
UC Berkalay
hellerstein@cs.berkeley.edu

enrichirg new sydem architecrures wich well undertond fazll tal
crance amchacusns sl beosclonh asumaay hat fadvoecs widl wot
aflcct sysiom outoomes. Unfurtursiely, Mauli-olernce is 2 wloda!
property of coiir svsicans apd gosraniees sboul the chavier wl
individ wal componerts do zot nocussaily hodd under composi oz,
I ls & Moult 1o decigm ard reacon about the fanic-olerance o 'ndi
vidual compceeats, md ofen equally difficult w0 assemble o ful-
Wherao systeo oven whes givea Rodi<olorant coouponios, 25 Wi
pesed by resent duta menegermenl system failures [16, 7] and
hap= [3h,49).

Top down testing oppeoackes which perturd and observe the
bebavioe of complex sysms o pn artractive akemative Lo veri
ticetion of individhaal componeans. Fanlt ixecson |1, 24, 35,445, 59|
Is the dominest wp-down appooach I e sollware anglneaing
and deperdabilicy commonities. With minirral pragrammes in
vesamnert, foult injecdon can guickly eaify ShuBow hugs cusal
by a small numbser cf indepordent fralts. Unfortunmedy, fauk in-
jeston is poxle seitsd W discoverlag tav evdsicivsamples in-
volvieg complex combinatives of multple fastxnces and types of

https://people.ucsc.edu/~palvaro/molly.pdf

DISORDERLY LABS

Automating Failure Testing Research at Internet Scale

Peter Alvaro

UC Samia Cruz
pahvaro@ucse.edu

Abstract

Lange-scale distribuled systems must be built w anticipate
aod miligale a vancly of bardware and software failures
La order 10 build ceafidence that fanli-oleraat systems are
correctly implemented, Netfhix (and similar enferprises) reg-
ularly run falare drills in which faults are deliberately in
Jeeted in their production sy sicine. The combinatorial space
of failure acenarnios ia too larpe to explore exhaustively. Ex-
isting failure 1estin g approaches either randomly explare the
space of potential Meilures randomly oc exploit the “hunches™
of domain caperts o guide the scarch. Random strae-
gles waste resources testing “‘uninteresting™ faults, while
programmer-guided appeoaches are only as good as human

Kolton Andrus
Gremling Ing, (Foruwdly Netflia)

koleon®@gremlininc.com

Chns Sanden Casey
Rosenthal Al Basird
Lorin Hochstein

Netflix, Inc.

csanden crosenthal abasir Ihochsten
EnetHix.com

the rule. In order 1o provide an “slways on™ experience to
custamers, the software used by Internct companics must
e he written 1o anticipate and work around a varicty of
emor coaditions, oumy of which are only present w large
scale. It s difficult wo cosure that such fault-toleant code
is ndequntely tested, becawse there are so many ways that a
Internet-scale distributed system can fail,

Chaos Cngineering [10], or “experimenting on a dis-
wibuted system in order to build confidence in the sys-
iem's capehility to withsitand wrbalent conditions in pro-
duction” has is cmerging as a discipline to tackle resilience
af these large scale distributed systemns [28, 35). Enginecrs
create frameworks thal automate Galore ingection, usually on

https://people.ucsc.edu/~palvaro/socc16.pdf

HOW CAN YOU CONTINUE YOUR

CHAOS ENGINEERING JOURNEY?

chaosengineering - #general

® Invery - L wdlu &

s Westordhy = .
sttt oo awory frim Fer vanzan e nne Manry plezes s v o o bt sivw of <tal geirg o

- uTpto.,
Tahon Debe, prrhope 58
MadvocKris 10 ©
B teoh, ot catty we theurbe o dark wurainees
Warrec Live cork matrer, wou caenat decover it drestly, aoly Jy indiecs copeyinent
RANDINZAMETS Cr Bl Soan o
ks ’ kaltan = .
Loaw [abeb s work inpeneral | thnkit's very aochcabe 1o Cucs ngnserng ‘dput Snbirag b= 28 the premene in ths soce, fulosed
P brg Skm o the Gome
mraduzbions
barnrg AERENN Vi
rencor hzibnn Lx: wer v o wading lie pott?
It atasys serms loe 2 20od Mea o start 2 atil; wender ng It sanziody tossac MedavAM op saneshire fpecpls mouc start
danang theirz-3in omic ternat
[I
N, 3l IUs cazize o Ccomwrit bo doing, somwething in the abztradt than n the concrete
) kolton 715 0w
W pot o i of oo e hepgremlinzoverzsources), The pene 7l CWos engdneering too sy matedsl w ks hes
Ao ot pred Inke | Srlewe

w capacity_clanng
pacity & 3 pZunn i in
Cange mraperent ah, o

Odct

by reers

Channux
wihigremenis

Fakris

v efficency

w RS Tonts
j chrasng @00 a4
+ h e b Ny

intident_~anazement
+ j2bs

Mars Urerade 4

https://slofile.com/slack/chaosengineering

CONTINUE BREAKING THINGS

ON PURPOSE TOGETHER

THANKS FOR ATTENDING THE:
CHAOS ENGINEERING BOOTCAMP

@TAMMYBUTOW

