
Immutable Infrastructure

Rethinking Configuration in the Age of Easy Redeployment

RackN, Inc

February, 2018
Note: Graphics mainly from http://pexels.com

<<< Shift Left <<<

2

@zehicle #immutable

Involved in Open Ops Software:

Digital Rebar Project

Kubernetes ClusterOps SIG

OpenStack Board

Your Humble Presenter

I’m all about automating infrastructure.

Rob Hirschfeld (aka @zehicle)

Co-Founder of RackN

rob@rackn.com

3

@zehicle #immutable

Storytime! “Self-Bootstrapping Kubernetes”

Kubecon in Nov 2017 we created this demo
Simple “immutable” Idea:

1) In Memory Boot Machines
2) Install Docker
3) Elect Leader
4) Run Kubeadm on Leader
5) Run Kubeadm on Remainder

But….it’s shockingly hard to maintain.

Dependencies breaks the installation

And they are constantly changing.

4

@zehicle #immutable

Storytime! “Self-Bootstrapping Kubernetes”

So, while it’s pretty cool,

it’s not “real” immutability

Presentation & Demo

https://youtu.be/OowxF6GqK4I

sa !

http://www.youtube.com/watch?v=OowxF6GqK4I&t=1088

Why is configuration fragile?

Why is configuration fragile?
mu on

V

7

@zehicle #immutable

But… I Infrastructure as Code?!
Sorry. Mutability adds complexity

Traditional “build-in place” approaches

● Have hidden dependency graphs
● Create variation between environments
● Are harder to “lock down” due to config

AND OMG… updates and patches are even harder
● Idempotent operations are difficult
● Roll backward is next to impossible!
● Creating indeterminate state

8

@zehicle #immutable

Traditional “build-in place” approaches

● Have hidden dependency graphs
● Create variation between environments
● Are harder to “lock down” due to config

AND OMG… updates and patches are even harder
● Idempotent operations are difficult
● Roll backward is impossible
● Creating indeterminate state

But… I Infrastructure as code?!
Sorry. Mutability adds complexity

Let’s o k w !

What is Immutable Infrastructure?

What is Immutable Infrastructure?Pre-de y fi d
V

11

@zehicle #immutable

Traditional Deploy and Configure

System is configured in situ from
a least common denominator
baseline.

This can be “immutable-like”
under the right conditions.

We’ll come back to that...

Delivery Pipeline

D
ep

lo
ym

en
t

C
o

d
e

B
u

ild

In
te

gr
at

e

R
u

n

C
o

n
fi

gu
re

12

@zehicle #immutable

Shifting Configuration BEFORE Deployment

In our ideal delivery pipeline,

configuration is before
deployment.

Running systems are delivered as
a complete runnable unit for
deployment.

Delivery Pipeline

D
ep

lo
ym

en
t

C
o

d
e

B
u

ild

In
te

gr
at

e

R
u

n

C
o

n
fi

gu
re

13

@zehicle #immutable

Shifting Configuration BEFORE Deployment

In reality, it’s very hard to create a
distinct artifact for every running
instance; instead, we create
incremental versions.

So we do some initialization of the
reusable versioned instance.

Cloud init is the most commonly
known pattern for this.

Delivery Pipeline

D
ep

lo
ym

en
t

C
o

d
e

B
u

ild

In
te

gr
at

e

R
u

n

C
o

n
fi

gu
re

Ini iz !

V

Cloud Native
Infrastructure
CNIbook.info
Justin Garrison & Kris Nova

“Infrastructure as software”

15

@zehicle #immutable

Which Enables… Delegating Operations

If you can make your artifacts
immutable then you can delegate
management of them to a
platform like Kubernetes.

Kubernetes does not configure
infrastructure. It maintains state
based on a manifest. St

at
e

M
an

ag
er

(e
.g

. K
u

b
er

n
et

es
)

C
o

d
e

B
u

ild

In
te

gr
at

e

R
u

n

C
o

n
fi

gu
re

Delivery Pipeline

16

@zehicle #immutable

Which Enables… Delegating Operations

If you can make your artifacts
immutable then you can delegate
management of them to a
platform like Kubernetes.

Kubernetes does not configure
infrastructure. It maintains state
based on a manifest. St

at
e

M
an

ag
er

(e
.g

. K
u

b
er

n
et

es
)

C
o

d
e

B
u

ild

In
te

gr
at

e

R
u

n

C
o

n
fi

gu
re

Delivery Pipeline

Kub te ? W !

Is ut > K8s?

Immutable is a DevOps Pattern

<<< Shift Left & Create/Delete

18

@zehicle #immutable

The Problem

Immutability <<< Shifting Left

package
server
image

provision
server

initial
config

19

@zehicle #immutable

The Problem

Immutability <<< Shifting Left

patch 1
package
server
image

provision
server

initial
config

20

@zehicle #immutable

The Problem

Immutability <<< Shifting Left

patch 1 patch 2
package
server
image

provision
server

initial
config

21

@zehicle #immutable

The Problem

Immutability <<< Shifting Left

patch 1 patch 2

t e d s o n't

s o t c 2!

package
server
image

provision
server

initial
config

22

@zehicle #immutable

The Problem

Immutability <<< Shifting Left

patch 1 patch 2

t e d s o n't

s o t c 2!
What Madness?

● We have to maintain root access
● Patches assume system state
● Patches create dependency graphs
● Coordination? Should we halt work?
● Drift is inevitable!

package
server
image

provision
server

initial
config

23

@zehicle #immutable

The Problem

Immutability <<< Shifting Left

patch 1 patch 2SA !!package
server
image

provision
server

initial
config

24

@zehicle #immutable

Apply cloud and container lessons to our Bare Metal …

Immutability <<< Shifting Left

package
server
image

provision
server

initial
config

destroy!!

25

@zehicle #immutable

Apply cloud and container lessons to our Bare Metal …

Immutability <<< Shifting Left

destroy!!

destroy!!patch 1

package
server
image

provision
server

initial
config

package
server
image

provision
server

initial
config

26

@zehicle #immutable

Apply cloud and container lessons to our Bare Metal …

Immutability <<< Shifting Left

destroy!!

destroy!!patch 1

destroy!!patch 2

package
server
image

provision
server

initial
config

package
server
image

provision
server

initial
config

package
server
image

provision
server

initial
config

27

@zehicle #immutable

Apply cloud and container lessons to our Bare Metal …

Immutability <<< Shifting Left

destroy!!

destroy!!patch 1

patch N

destroy!!patch 2

package
server
image

provision
server

initial
config

package
server
image

provision
server

initial
config

package
server
image

provision
server

initial
config

package
server
image

provision
server

initial
config

Cloud like behavior …

29

Immutable Provisioning systems
treat infrastructure as a black box

Cloud-like Integration and Staged Workflow

Provisioning
System

Requested
State

Returned
State

REST
API

Event
Hook

30

Cloud-like Integration and Staged Workflow

Immutable Provisioning systems
treat infrastructure as a black box

Provision requests are for a system state
with optional parameters.

The intermediate changes to achieve the
state are not exposed to the requester.

Provisioning
System

Reset Join

In
st

al
l

C
o

n
fi

g

T
es

t

Requested
State

Returned
State

REST
API

Event
Hook

31

Cloud-like Integration and Staged Workflow

Immutable Provisioning systems
treat infrastructure as a black box

Provision requests are for a system state
with optional parameters.

The intermediate changes to achieve the
state are not exposed to the requester.

REMEMBER: Operators of the
provisioning system require high
transparency, stages and control.

Provisioning
System

Reset Join

In
st

al
l

C
o

n
fi

g

T
es

t

Requested
State

Returned
State

REST
API

Event
Hook No h n

op i n !

Immutable Patterns
1) Baseline + Configuration
2) Live Boot + Configuration
3) Image Deploy

33

Provision

1: Baseline + Configuration

Benefit: Easiest to achieve with current tools, Safer than Patching

Challenge: Lots of Post-Configuration, Not Really “Immutable”, Slow

Instead of relying on patches, rely on starting from a pristine image

ResetBaseline Configure Run

Additional Reference https://thenewstack.io/immutable-hardware-ops-hygiene-security-efficiency/

https://thenewstack.io/immutable-hardware-ops-hygiene-security-efficiency/

34

Benefit: Fast reset times, forces good behavior

Challenge: Provisioning becomes critical path, still have dependency graph

Like #1 but clean-up is simply a reboot. Favors smaller footprint O/S.

2: Live Boot + Configuration

Provision RebootBaseline Configure Run

35

3: Image Deploy

Benefit: Shorter time to ready, highly controlled (“shift left”), rollback

Challenge: Harder to create and deploy images

Image is deployed from source instead of Baseline + Configure

Provision
Deploy
Image

Run Provision
Deploy
Image

Run

36

3: Image Deploy

Benefit: Shorter time to ready, highly controlled (“shift left”), rollback

Challenge: Harder to create and deploy images

Image is deployed from source instead of Baseline + Configure

Provision
Deploy
Image

Run Provision
Deploy
Image

Run

Ini iz !

V

Ini iz !

V

37

So… Let’s talk Image Creation

Ideally in an automation build process.

You DO THE CONFIGURATION on a
live system (so you still need
configuration tools) and then capture
the image into a portable format.

Tools like Hashicorp Packer, Image
Builder, WBIC or raw images are used
to create source files (e.g. AMI, OVS).

38

So… Let’s talk Image Creation

Ideally in an automation build process.

You DO THE CONFIGURATION on a
live system (so you still need
configuration tools) and then capture
the image into a portable format.

Tools like Hasicorp Packer, Image
Builder, WBIC or raw images are used
to create source files (e.g. AMI, OVS).

Tha n li ot

of k & re y ow!

Yes, But…

It’s faster, safer & more scalable.

40

Build Pipeline

Immutable Demo

Prep: Image is pre-created from reference system.

Reference
System

Image

Read

41

Build Pipeline Deploy

Immutable Demo

Prep: Image is pre-created from reference system.

Stage: Boot RAM image and write image to disk(s)

Reference
System

Image

Target System
RAM BOOT

WriteRead

42

Build Pipeline Deploy

Immutable Demo

Prep: Image is pre-created from reference system.

Stage: Boot RAM image and write image to disk(s)

Deploy: Reboot and run

Reference
System

Image

Target System
RAM BOOT

Target System
RUNNING

R
eb

o
o

t

Write RunRead

43

Build Pipeline Deploy

Immutable Demo

Prep: Image is pre-created from reference system.

Stage: Boot RAM image and write image to disk(s)

Deploy: Reboot and run

Reference
System

Image

Target System
RAM BOOT

Target System
RUNNING

R
eb

o
o

t

Write RunRead
Ini iz !

V

Thank you!
Questions?

Interested in IMMUTABLE METAL?

It’s complicated, but we can get you there.

Start at http://portal.rackn.io

• Quickstart takes about 30 minutes

• Use your own hardware, VirtualBox or Packet.net
account

– use “RACKN100” on Packet.net for credit

http://portal.rackn.io

