
Distributed Tracing @ Jet

Gina Maini
Senior Platform Engineer

3

@wiredsis

Leo Gorodinski

Hussam Abu-Libdeh

Erich Ess

4

@egarhardess

@eulerfx

@hussam

Not Your Average E-Comm 5

• Event Sourcing
• F# Language
• Multi-region
• Containers
• Asynchronous
• Hosted in Azure

Why does Jet care about
Distributed Tracing?

7

“Show me all inventory updates which
failed for a given merchant.”

8

CHANGE S
KU

HTTP REQ

CHANGE SKU
HTTP REPLY

USER

MERCHANT API

CATALOG

SEARCH

INVENTORY IN
DEX SKU

MESSAGE BUS

KAFKA

PUBLISHMESSAGE BUS

ELASTIC SEARCH
Topology
Diagram:
“A merchant
updates a SKU.”

9USER MERCHANT CATALOG SEARCH

UPDATE
SKU ENQUEUE

DEQUEUE

INDEX SKUVisualizing
Communications
By Services:
“A merchant
updates a SKU.”

PUBLISH

10USER MERCHANT CATALOG SEARCH

START

COMPLETE

COMPLETE

START

START
START

START

COMPLETE

INFO EVENT

SYNC

ASYNC
ASYNC

ASYNC

SYNC

Visualizing
Communications
By Type:
“A merchant
updates a SKU.”

COMPLETE

11

Visualizing An
Event Log :
“A merchant
updates a SKU.”

TIME

START

START

COM
PLETE

COM
PLETE

START

START

COM
PLETE

COM
PLETE

IN
FO EVENT

START

COM
PLETE

What exists in the ecosystem today?

Ecosystem Overview: 13

• OpenTracing a vendor-neutral open standard for distributed tracing.
Influenced by Dapper & Zipkin.

• Dapper Google’s tracing platform, used mostly for RPC interactions.

• Zipkin Twitter’s tracing system based on Dapper.

• OpenCensus A single distribution of libraries for metrics and
distributed tracing with minimal overhead that allows you to export
data to multiple backends.

We decided to make a custom
Distributed Tracing platform.

WCGW?

Problem: Can’t Trace All The Things All At Once
Solution:

17

• Treat it like a traditional MVP for a product, not
R&D.

• Differentiate solutions on persona needs.
• Leverage cross-team coordination to identify

which flows people “want to trace” and “need to
trace.” Find Tracing ”Sponsors” in your company.

Problem: Unwieldy Over-The-Wire Specification
Solution:

18

• Emit “baggage” both scoped to the Span & the
entire Trace as ‘events’

• Since events are immutable and written to a log
with a sequence number (using Kafka) we avoid
mutable global state.

• Minimalist wire spec containing just Guids and
“Operation Names”

type Header =

{
HeaderVersion : int
CorrelationIds : string list
MessageId : string
ParentIds : string list
ProducerId : string
PayloadSchemaUri : string
TicksFromEpoch : int64
MTags : Map<string,string>
Ptags : Map<string,string>

}

19

Old Metadata Format:

type TraceContext =

{
// a GUID which represents the
// instance of the traced action
trace_id : string

// the operation name which generated
// this trace data
op : string

// optional tags which don’t get emitted in carrier
// just key/value pairs
tags : TraceTags

}

20

New Metadata Format:

Problem: Not Great Library, Not Easy To Add-In Tracing
Solution:

21

• Auto-calculate Span Latency information
• Integrate with Nomad Metadata
• Computation Expressions in F#
• Compatibility with multiple mediums: Kafka,

Event Streaming Libs, Azure Databases, HTTP, etc
• Bussing of Telemetry Events

Propagation Overview: 22

µ
H1

P1

H1’

P1’

H2’

P2’ H2

P2

PROCESSING OUTIN

DESERIALIZATION SERIALIZATION

PROPAGATION

OVER WIRE OUTPUTOVER WIRE INPUT

module Envelope =

/// A message in its serialized state
type Serialized = Serialized

/// The message read from a data source
type In = In

// Currently in process
type InProcess = InProcess

/// The message which will be written to a data source
type Out = Out

23

Thinking in Envelopes

let prepareOutEnvelope
serviceName schemaUri (outEnvelope:Envelope<'kind, _>)
: Envelope<Out,_> =

let header =
Header.Propagate serviceName schemaUri [outEnvelope.Header]

{ Header = header
Payload = outEnvelope.Payload }

let prepareOriginEnvelope serviceName schemaUri outPayload
: Envelope<Out,_> =

let header = Header.Origin serviceName schemaUri
{ Header = header
Payload = outPayload }

24

Thinking in Envelopes, Phantom Types

// The madness continues…

let map f (envelope:Envelope<'kind,_>) : Envelope<InProcess,_> =
{ Header = envelope.Header; Payload = f envelope.Payload }

let resultMap
(f: 'a -> Result<'b, _>) (envelope:(Envelope<In, Result<'a, _>>))
: Envelope<InProcess, _> =

envelope |> map (function
| Ok j -> f j
| Error err -> Error err)

25

Envelopes all the way down…

/// A request-reply server channel wherein the channel
/// handles inputs of type 'i and produces outputs of type 'o.
/// The server is expressed in terms of inputs of type 'a
/// and outputs of type 'b.
type ReqRepServer<'i, 'o, 'a, 'b> =
{ ch : Channel
decoder : Dec<'i, 'a * TraceContext>
encoder : Enc<'o, 'b * TraceContext> }

/// A publish-subscribe channel with inputs of type
/// 'i, outputs of type ‘o and domain-specific message type 'a.
type PubClient<'m, 'a> =
{ ch : Channel
encode : Enc<'m, 'a * TraceContext> }

/// A publish-subscribe channel with inputs of type
/// 'i, outputs of type ‘o and domain-specific message type 'a.
type SubClient<'m, 'a> =
{ ch : Channel
decoder : Dec<'m, 'a * TraceContext> }

26

Rework: Channel Types, Working over “mediums”…

/// A request-reply server channel wherein the channel
/// handles inputs of type 'i and produces outputs of type 'o.
/// The server is expressed in terms of inputs of type 'a
/// and outputs of type 'b.
type ReqRepServer<'i, 'o, 'a, 'b> =
{ ch : Channel
decoder : Dec<'i, 'a * TraceContext>
encoder : Enc<'o, 'b * TraceContext> }

/// A publish-subscribe channel with inputs of type
/// 'i, outputs of type ‘o and domain-specific message type 'a.
type PubClient<'m, 'a> =
{ ch : Channel
encode : Enc<'m, 'a * TraceContext> }

/// A publish-subscribe channel with inputs of type
/// 'i, outputs of type ‘o and domain-specific message type 'a.
type SubClient<'m, 'a> =
{ ch : Channel
decoder : Dec<'m, 'a * TraceContext> }

27

Rework: Channel Types, Working over “mediums”…

28

Feeling experimental??
Let’s go to an editor.

type TelemetryEvent =

{
trace_id : string

/// Either Start, Complete, or a Custom event type
event_type : string

/// The timestamp of the event being written
timestamp : DateTimeOffset

tags : TraceTags
}

29

New Metadata Format:

30

Visualizing An
Event Log :
“A merchant
updates a SKU.”

TIME

START

START

COM
PLETE

COM
PLETE

START

START

COM
PLETE

COM
PLETE

IN
FO EVENT

START

COM
PLETE

{
“event_type”: “START”,

“trace_id”: “1a2b3”,

“timestamp”: “123456789”

“tags” : {
“op_name”: “IndexSkus”
“merchant_id”: “4c5d6e7”

}
}

Problem: Uncertain Querying & Indexing
Solution:

31

• Graph Definitions via Reflection
• Semantics around “starting” & “stopping” an

“Operation”
• Projection from CosmosDB which sends

snapshots to Splunk

32

Problem: Bad UI/UX
Solution:

33

• Current frameworks aren’t a great fit.
• Leverage Splunk for custom dashboards per

team.
• Iterating on multiple custom UIs that feature

topology graphs (force-directed graphs) and
various hierarchical tree views.

In the future… 34

• Unified Logging
• Schematization
• Higher level abstractions
• More integrations, more backends, more

projections
• Open Source!?!?!?!

Lessons You Can Go To The Bank On: 35

1. Leverage product to target owners and “tracing
sponsors” around your org.

2. You might need to make some flashy views just to get
buy in from stakeholders even if it doesn’t help
developers solve real problems.

3. This project takes time and careful requirement
gathering. Carve out a useful tracing flow, one
distributed action at a time.

THANK YOU FOR YOUR TIME! 36

Come find me in the hallway if you:
- Want to talk about tracing
- Want to not talk about tracing
- Want to write F# for a living :]

@wiredsis

More reading… 37

• https://opencensus.io/

• http://opentracing.io/

• https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-
framework

• https://research.google.com/pubs/pub36356.html

• https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-
framework

• https://zipkin.io/

• https://research.fb.com/publications/canopy-end-to-end-performance-tracing-at-
scale/

• https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8 (He’s
Hiring)

https://zipkin.io/
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8

