Distributed Tracing @ Jet

I¥Rb
NU=Rmp”

CIERVYER]
Senior Platform Engineer

YW @wiredsis

@ Leo Gorodinski Y @eulerfx

% Hussam Abu-Libdeh Yy @hussam

V-

Y @egarhardess

Not Your Average E-Comm

Event Sourcing
F# Language
Multi-region
Containers
AsSynchronous
Hosted in Azure

Why does Jet care about
Distributed Tracing?

“Show me all which
foragiven o

AT

Topology
Diagram:

“A merchant
updates a SKU.”

UPDATE :
SKU . ENQUEUE

DEQUEUE

1

Visualizing - :
Communications —>
’ i l PUBLISH

INDEX SKU

By Services:
“A merchant

updates a SKU.”

START
START
s/
SYNC SYNC

S GOMPI.ETEI START

\ sy No

| COMPLETE ; 48)//\/ | —
Visualizing \, —>_ .
Communications START .
B} / T} er COMPLETE ASYNG
“A merchant i i

INFO EVENT

COMPLETE

updates a SKU.”

TIME

Visualizing An
Event Log :

“A merchant

updates a SKU.”

What exists in the ecosystem today?

Ecosystem Overview: .

OpenTracing a vendor-neutral open standard for distributed tracing.
Influenced by Dapper & Zipkin.

Dapper Google’s tracing platform, used mostly for RPC interactions.
Zipkin Twitter’s tracing system based on Dapper.

OpenCensus A single distribution of libraries for metrics and
distributed tracing with minimal overhead that allows you to export
data to multiple backends.

We decided to make a custom
Distributed Tracing platform.
WCGW?

EVER MAKE A MISTAKE IN LIFED

TIIEY'IIE BIIIIIS IIIIW

Problem: Can’t Trace All The Things All At Once
Solution:

. Treat it like a traditional MVP for a product, not
R&D.

. Differentiate solutions on persona needs.

. Leverage cross-team coordination to identify
which flows people “want to trace” and "need to
trace.” Find Tracing “Sponsors” in your company.

Problem: Unwieldy Over-The-Wire Specification
Solution:

. Emit "baggage” both scoped to the Span & the
entire Trace as ‘events’

. Since events are immutable and written to a log
with a sequence number (using Kafka) we avoid
mutable global state.

- Minimalist wire spec containing just Guids and
"Operation Names”

type Header =

{

HeaderVersion : int
CorrelationIds : string list
Messageld : string

ParentIds : string list
ProducerId : string
PayloadSchemaUri : string
TicksFromEpoch : int64

MTags : Map<string,string>
Ptags : Map<string,string>

type TraceContext =

{
// a GUID which represents the

// instance of the traced action
trace_id : string

// the operation name which generated
// this trace data
op : string

// optional tags which don’t get emitted in carrier
// just key/value pairs
tags : TraceTags

Jey

Problem: Not Great Library, Not Easy To Add-In Tracing
Solution:

. Auto-calculate Span Latency information
. Integrate with Nomad Metadata
. Computation Expressions in F#

. Compatibility with multiple mediums: Kafka,
Event Streaming Libs, Azure Databases, HT TP, etc

. Bussing of Telemetry Events

Jeyy

Propagation Overview: 2
DESERIALIZATION SERIALIZATION
OVER WIRE INPUT HT H2' OVER WIRE OUTPUT
H1 PROPAGATION H2

IN PROCESSING OuT

Thinking in Envelopes

module Envelope =

/// A message in its serialized state
type Serialized = Serialized

/// The message read from a data source
type In = In

// Currently in process
type InProcess = InProcess

/// The message which will be written to a data source
type Out = Out

Thinking in Envelopes, Phantom Types

let prepareOutEnvelope
serviceName schemaUri (outEnvelope:Envelope<'kind, >)
Envelope<Out, > =

let header =

Header.Propagate serviceName schemaUri [outEnvelope.Header]
{ Header = header
Payload = outEnvelope.Payload }

let prepareOriginEnvelope serviceName schemaUri outPayload
Envelope<Out, > =

let header = Header.Origin serviceName schemaUri
{ Header = header
Payload = outPayload }

Envelopes all the way down...

// The madness continues..

let map f (envelope:Envelope<'kind, >) : Envelope<InProcess, > =
{ Header = envelope.Header; Payload = f envelope.Payload }

let resultMap

(f: 'a -> Result<'b, >) (envelope:(Envelope<In, Result<'a, >>))
: Envelope<InProcess, > =

envelope |> map (function
| Ok § -> f j
| Error err -> Error err)

Rework: Channel Types, Working over “mediums”...

/// A request-reply server channel wherein the channel

/// handles inputs of type 'i and produces outputs of type 'o.
/// The server is expressed in terms of inputs of type 'a
/// and outputs of type 'b.

type ReqRepServer<'i, 'o, 'a, 'b> =

{ ch : Channel

decoder : Dec<'i, 'a * TraceContext>

encoder : Enc<'o, 'b * TraceContext> }

/// A publish-subscribe channel with inputs of type

/// 'i, outputs of type ‘o and domain-specific message type 'a.
type PubClient<'m, 'a> =

{ ch : Channel

encode : Enc<'m, 'a * TraceContext> }

/// A publish-subscribe channel with inputs of type

/// 'i, outputs of type ‘o and domain-specific message type 'a.
type SubClient<'m, 'a> =

{ ch : Channel

decoder : Dec<'m, 'a * TraceContext> }

Rework: Channel Types, Working over “mediums”...

/// A request-reply server channel wherein the channel

/// handles inputs of type 'i and produces outputs of type 'o.
/// The server is expressed in terms of inputs of type 'a
/// and outputs of type 'b.

type ReqRepServer<'i, 'o, 'a, 'b> =

{ ch : Channel

decoder : Dec<'i, 'a * TraceContext>

encoder : Enc<'o, 'b * TraceContext> }

/// A publish-subscribe channel with inputs of type

/// 'i, outputs of type ‘o and domain-specific message type 'a.
type PubClient<'m, 'a> =

{ ch : Channel

encode : Enc<'m, 'a * TraceContext> }

/// A publish-subscribe channel with inputs of type

/// 'i, outputs of type ‘o and domain-specific message type 'a.
type SubClient<'m, 'a> =

{ ch : Channel

decoder : Dec<'m, 'a * TraceContext> }

Feeling experimental??
Let’'s go to an editor.

3

type TelemetryEvent =

{

trace_id : string

/// Either Start, Complete, or a Custom event type
event_type : string

/// The timestamp of the event being written
timestamp : DateTimeOffset

tags : TraceTags

TIME

Visualizing An
Event Log :

"A merchant
updates a SKU.”

“event_type": “START",

“trace_id”": “1a2b3"”,
“timestamp”: “123456789"
“tags” : {

“op_name"”: “IndexSkus”
“merchant_id”: “4c5d6e7”

}

Problem: Uncertain Querying & Indexing
Solution:
. Graph Definitions via Reflection

. Semantics around “starting” & “stopping” an
"Operation”

. Projection from CosmosDB which sends
snapshots to Splunk

Azure

VM/Container

~ ~
—~ ~ — -~
S o T~
~
~
~
.
.~
~
- - - S

trace_id |event_id | time op type tags ~

1 234 20170308 | import start <data>»

—/ Filebeat |\ —

X-Ray API

X-Ray Ul

32

Problem: Bad Ul/UX
Solution:

. Current frameworks aren’t a great fit.

. Leverage Splunk for custom dashboards per
team.

. Iterating on multiple custom Uls that feature
topology graphs (force-directed graphs) and
various hierarchical tree views.

ue

In the future...

. Unified Logging
. Schematization
. Higher level abstractions

. More integrations, more backends, more
orojections

. Open Sourcel?l717l

ue

Lessons You Can Go To The Bank On:

1. Leverage product to target owners and “tracing
sponsors” around your org.

2. You might need to make some flashy views just to get
buy in from stakeholders even if it doesn’t help
developers solve real problems.

3. This project takes time and careful requirement
gathering. Carve out a useful tracing flow, one
distributed action at a time.

THANK YOU FOR YOUR TIME!

Come find me in the hallway if you:
Want to talk about tracing
Want to not talk about tracing
Want to write F# for a living :]

@wiredsis

More reading... .

https://opencensus.io/
http://opentracing.io/

https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-
framework

https://research.google.com/pubs/pub36356.html

https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-
framework

https://zipkin.io/

https://research.fb.com/publications/canopy-end-to-end-performance-tracing-at-
scale/

https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8 (He’s
Hiring)

https://zipkin.io/
https://medium.com/@eulerfx/scaling-event-sourcing-at-jet-9c873cac33b8

