
Help protect your datacenters
with safety constraints

Etienne Perot and Christina Schulman, Google

Datacenter automation at Google

● Datacenter machine management is complex

● It’s easier to safeguard the automation than to fix
everything that uses it.

Datacenter automation at Google

Google uses automation to handle datacenter machine
activity

● repairs
● installs
● decommissions

Educational Experience #1

That time we erased our entire Content Delivery
Network

Educational Experience #1

● Engineer attempts to manually send 1 rack
of CDN machines to Diskerase

Educational Experience #1

● Query bug causes ALL the CDN machines to
go to Diskerase
○ Result: slow user queries, internal network

congestion, 2 days of manual cleanup

Educational Experience #2

That time we decommissioned all our
Tunneling Load Balancers

Educational Experience #2

● Dedicated switches used to be used as TLBs
for all traffic entering the datacenters

Educational Experience #2

● A utility script was used to send retired
switches to decom

Educational Experience #2

● Whoops. The underlying data has changed.

● Specifically, the script now matches all the
TLBs as retired.

Educational Experience #2

● We got lucky: TLBs kept serving because
they didn’t know they’d been decommed.

How can we prevent this?

● Completely different root causes

● But: common patterns for root causes

● Overmatching / inadequate limiting

● Code rot / changing nature of data

● Complex interdependent systems

● Unsafe releases and rollouts

Common Failure Patterns

So how do we protect our machines?

● Common patterns, but different systems

● Different root causes

● Same mechanism of destruction

So how do we protect our machines?

So use a central mechanism to mitigate risk

So how do we protect our machines?

So use a central mechanism to mitigate risk

● and bake it into your automation

{{Magic transition slide}}
 °˖✧ ヾ(❀╹◡╹)ﾉﾞ ✧˖°

Safety Constraint Checking as a Service (SCCaaS)

● Production infrastructure at Google: It's Complicated™.
● But:

"Production Shall Keep Running."
(encoded as: "SLOs Shall Be Respected.")

● Let's write an RPC service to keep this true!

SRSly?

● "Are you serious?"
● Est. 2009
● Prevented many outages.

What can go wrong at all?

● Enumerate production workflows.
● Figure out blast radius.

Example workflows

● Machine upgrades
● Storage drains
● Migrating VMs
● Pushing datacenter-wide configs
● Shutting down racks

Now what?

● Sanity-checks and rate-limits
● Look at your SLOs for inspiration!

Constraint pattern #1

● Rate limits:
Allow N things per period per bucket.

"Allow at most 1% of TLBs per 1h per datacenter
to be sent to decom."

Constraint pattern #2

● Concurrency limits:
Allow at most N concurrent things
per bucket.
"Allow at most 5% of CDN machines per
datacenter to be rebooting before allowing more."

Constraint pattern #3

● Sanity/policy checks:
Only approve thing if condition is true.

"Can only reboot a machine that has no VMs
running on it."

Constraint pattern #4

● Service-specific health checks:
Prevent disruption to service if it is bad.

"Can't impact Google Web Search
if its oncaller got paged recently."

Constraint pattern #5

● Automatic braking:
Stop approving things if recent approvals
caused pain.

"Don't upgrade rackswitches if recent rackswitch
upgrades resulted in broken rackswitches."

API

Check(Entity, Intent) → (bool, string)

● Entity: What is being affected.
● Intent: What is being done.
● Returns:

Whether it's safe to go ahead, and why/why not.

Request handling

Data
gathering

Return
"yep"

Map to
constraints

Evaluate
constraint 1

Evaluate
constraint 2

...

Result

Request
Return
"nope"

(no wai)

N
op

e

Record
approval

All "yes"

Safety² constraint service

● SRSly's configuration itself can be bad

How to avoid?

● Regression tests for config mapping
● Internal sanity checks
● Big Red Button™
● Shard it! Slow rollout!

Behavior overrides

● Want to do Something Special™?
○ Roll out kernel faster to patch a vulnerability
○ Prevent extra disruptions during demos

● Override behavior!
○ Force approval/rejection, disable constraint, tweak params
○ Auto expiry & max duration
○ Keyed by Entity and/or Intent

Enforcing safety checks

A B

SRSly

B constraints
Certificate

tl;dlisten

● Production gets more complicated over time
● Automation can go horribly wrong
● Apply defensive design

○ Protect it {early, often, well}

Questions?

Etienne Perot and Christina Schulman, Google

