
Distributed Log-Processing Design Workshop
Introduction
SREcon Americas
Santa Clara, CA March 2018

Laura Nolan, Phillip Tischler, Salim Virji
Site Reliability Engineers, Google

Proprietary + Confidential

Design a distributed log-processing system, going from the problem specification down to a bill of materials.

Perfect solution not required, "back-of-the-envelope"-style of reasoning.

Laptop not required.

You'll work in groups, assisted by facilitators.

Most important thing: have fun tackling a technical problem together. ☺�

Goals

Proprietary + Confidential

09:05 – 09:10 Introduction

09:10 – 09:45 Considerations in Designing Distributed Systems

09:45 – 09:50 Handout distribution, break out in groups

09:50 – 10:00 Problem statement

10:00 – 10:30 Hands-on design activity (Architecture)

10:30 – 11:00 Break

11:00 – 11:40 Hands-on design activity (Provisioning)

11:40 – 12:10 Present example solution

12:10 – 12:30 Present final solution, discussion

Agenda

Distributed Log-Processing Design Workshop
Considerations in Designing Distributed Systems
SREcon Americas
Santa Clara, CA March 2018

Proprietary + Confidential

Architectural Considerations

Handling Failure

Managing Consistency and State

Topics

Source: Jim Ehle, Wikimedia, Creative Commons

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Architectural Considerations

Proprietary + Confidential

It’s critical to understand data freshness needs.

You must try to understand current and future scale.

Can we treat some data differently than other?

Gather requirements

Source: MegLearner on Pixabay, Public Domain

￼

Proprietary + Confidential

How much data now and in the future?

Where does the data need to live?

How many copies to I need?

In what dimensions do I scale and which dominates?

Let your Service Level Objectives (SLOs) play a major role in

your design.

What’s my scale?

Source: Thomas Galvez, Creative Commons

Proprietary + Confidential

Can’t be consistent, available and partition tolerant

all at the same time.

You really want partition tolerance.

Figure out which of your data needs to be available

and which consistent.

CAP conjecture

Source: Nemosandman, Wikimedia, Creative Commons

Proprietary + Confidential

Handling Failure

Proprietary + Confidential

A set of things that might experience correlated failure

● A single process

● A machine

● A rack

● A datacenter

● Servers on the same software

● A global configuration system

Failure domains

Source: Andrew Wilkinson

Proprietary + Confidential

Spread responsibilities across multiple processes

Watch out for global config pushes.

Canary changes and pause before global rollout.

Don’t depend on one backend.

Keep serving if configs corrupt or fail to push.

Decouple your servers

Source: dschwen , Wikimedia, Creative Commons

Proprietary + Confidential

Raises all the problems of distributed consensus.

But that’s ok, there are solutions.

Works well with load balancing.

Less well with cross-DC work.

Use multiple datacenters

Source: Robert.Harker, Wikimedia, Creative Commons

Proprietary + Confidential

Plan to have one unit out for upgrade and survive another

failing.

Make sure that each unit can handle the extra load.

Don’t make any one unit too large.

Try to make units interchangeable clones.

("Cattle, not pets")

Be N+2

Source: Nick Royer, Flickr, Creative Commons

Proprietary + Confidential

Managing Consistency and State

Proprietary + Confidential

Stateless servers are easy.

Try to make as much of your system stateless as possible.

The best state is no state.

Try not to keep state

Source: pixabay, public domain

Proprietary + Confidential

Partition your data on something in the request (e.g.

userid) into N buckets. Stateless but fragile in face of

more servers. Fragile if server dies.

Have NxM shards assigned to M servers (with replicas).

Reliable but needs coordination.

We can balance load at cost of needing to lookup shard

location.

Shard it

Source: Steven Depolo, Flickr, Creative Commons

Proprietary + Confidential

Agrees on one consistent result between a collection of

unreliable processes.

Requires a majority of processes to remain up and contactable.

Best known protocol is Paxos, others are ZAB (used in

Zookeeper) and RAFT.

Individual replicas may be slow to converge (CAP).

Distributed consensus protocols

Source: Wikimedia, public domain.

Proprietary + Confidential

We can build distributed locking and slow filestores

From that we can build master election

From that we can make sure that only one of our replicas

owns a shard.

We can also make sure we can find the replicas.

Overall, great for metadata, not so much for rest.

From distributed consensus:

Source: pixabay, public domain

Distributed Log-Processing Design Workshop
Problem Statement
SREcon Americas
Santa Clara, CA March 2018

Proprietary + Confidential

● We have 3 data centers (DC): Europe, North America, Asia.

● Services in each of them write log entries to a reliable distributed filesystem, one in each DC.

● Data is then asynchronously replicated to the other two.

Context

Europe

Logtype
A

Logtype
B

Logtype
C

North America

Logtype
A

Logtype
B

Logtype
C

Asia

Logtype
A

Logtype
B

Logtype
C

Asynchronous
data replication

Asynchronous
data replication

Asynchronous
data replication

Proprietary + Confidential

3 types of log entries: A, B, C; each log entry contains Entry ID, timestamp and payload.

Design a system which joins log entries of type A+B and A+C, based on a shared Entry ID.

Problem Statement

Matching EntryID

Join

12345 Timestamp A Payload A 12345 Timestamp B Payload B

12345 Timestamp A Payload A Timestamp B Payload B

ID A

ID A

Proprietary + Confidential

Requirements

Reliability
The system should be reliable to failure of

● one DC
● one network link between any 2 DCs
● individual machines

Performance
95% of entries should be joined within 60 minutes from when it is first possible

Correctness
each joined pair must appear in the output at most once
each joined pair should appear in the output at least once
entries older than 10 days can be ignored

Proprietary + Confidential

Input Data Characteristics

● EntryID is 16B, timestamp is 8B (both already
included in entry size)

● Logtype B and C can only be written after
corresponding entries in Logtype A have been
written

Size per entry Entries per day (globally)

Logtype A 5kB approx. 10 billion (1010)

Logtype B 1kB approx. 250 million (250*106)

Logtype C 1kB approx. 50 million (50*106)

Proprietary + Confidential

Infrastructure

Filesystem

● Log entries are appended to files, which are wrapped at 1 GB
● Logs are stored on a reliable filesystem, distributed within the DC
● Files are replicated by using an asynchronous, reliable replication system with a delay of a

few minutes
● Your system reads within the DC and writes within the DC.

Available types of machines (quantity unlimited)

● 24G RAM, 8 cores, 2x2TB hard drives, 1Gb ethernet
● 24G RAM, 8 cores, 2x1TB SSD, 1Gb ethernet

Proprietary + Confidential

● Goal:

○ come up with an overall architecture and design, down to a bill of materials (# of machines needed)

● Reason about the data volume

● Focus first on the general architecture, then on the dimensioning

Suggestions on how to approach the problem

Example Solution
Distributed Log-Processing Design Workshop
SREcon Americas
Santa Clara, CA March 2018

Proprietary + ConfidentialProprietary + Confidential

Problem Recap

Proprietary + Confidential

● Join entries with matching ID across A+B, A+C

● Input files in 3 DCs

● The system must be reliable to an outage affecting a single DC or connection between any 2 DCs

High-level Constraints

Europe

Logtype
A

Logtype
B

Logtype
C

North America

Logtype
A

Logtype
B

Logtype
C

Asia

Logtype
A

Logtype
B

Logtype
C

Asynchronous
data replication

Asynchronous
data replication

Asynchronous
data replication

Proprietary + Confidential

Architecture of our example solution

Proprietary + Confidential

Approach

Naïve solution: 3 identical instances, each processing the same events.

Challenges:

● correctness - each joinable pair of log entries must appear at most once in the output

● efficiency - the system should avoid doing duplicate work

We'll address them after looking at the structure of one of these instances.

Proprietary + Confidential

Reading input logs

~100% of B/C log entries will be joined;

at most ~3% of A log entries will be joined.

Logtype A
(~10B entries/day)

(drawing not to scale)

Logtype B (or C)
(~50-250M entries/day)

Proprietary + Confidential

Tailer

Tails open files, discovers new files.

Tailer

Logtype B (or C)

Proprietary + Confidential

EventStore Subsystem

Tailing component

Logtype A

Key/Value Store

Key: EntryID
Value: (filename, offset)

AnExampleEntryID (LogtypeA.20160309.0004.log, 42)

EventStore

Proprietary + Confidential

Joiner

Replies to requests from the Tailer.

Once the Tailer sends a Join RPC, the Joiner:

● fetches from EventStore

the corresponding entry from A;

● entry found: writes the joined log entry

to the output filesystem

● entry not found: send an error code

back to the Tailer, that will back off

and retry

Tailer

Logtype B (or C)

EventStore

Logtype A

Joiner

Joined Logs

Retry

Proprietary + Confidential

Overall Architecture Diagram

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

North America Europe Asia

Proprietary + Confidential

Introducing Paxos-based distributed state

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

North America Europe Asia

Paxos-based EntryIdStore

Proprietary + Confidential

Role of EntryIdStore

Keeps in memory the joined EntryIDs.

Tailer can verify if the entry being read was

already joined.

Joiner can write the EntryID of the joined entries.

This takes care of correctness and efficiency.

Tailer

Logtype B (or C)

EventStore

Logtype A

Joiner

Joined Logs

Retry

EntryIdStore

Proprietary + Confidential

Dimensioning

Proprietary + Confidential

Architecture Recap

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

Tailer

Logtype B

EventStore

Logtype A

Joiner

Joined Logs

Logtype C

North America Europe Asia

Paxos-based EntryIdStore

Proprietary + Confidential

Dimensioning Tailer

Tailer

Logtype B (or C)

Bandwidth requirements:

250M entries/day * 1 kB/entry * 2 = 500 GB / day = 6200 KBps = 49.6 Mb/s

Outgoing RPC rate: 250M entries/day = 2900 QPS

Footprint: 1 machine

Proprietary + Confidential

Dimensioning EventStore: tailing component

Conceptually the same as the Tailer

Bandwidth: 10 billion entries/day * 5 kB/entry = 50 TB/day = 570 MBps ~= 4.5 Gbps

The network is going to be the bottleneck.

Footprint: 4.5 Gbps / 1 Gbps ~= 5 machines.

10 billion entries/day = ~120k entries/second.

Would be good to batch writes to the key/value store.

Proprietary + Confidential

Dimensioning EventStore: key/value store (storage)

Number of entries: 10 billion entries/day * 10 days = 100 billion entries

Average size of a key/value pair:

len(EntryID) + len(filename) + size of offset

 16 B + ~100 B + 4 B = ~150B

100 billion entries/day * 150 B/entry → ~15 TB space required

Footprint (in-memory): 15 TB / 20 GB RAM/machine = 750 machines

Footprint (SSD): 15 TB / 2 TB SSD/machine = 8 machines

Footprint (disk): 15 TB / 4 TB disk/machine = 4 machines

{ { {

Proprietary + Confidential

Dimensioning EventStore: key/value store
(latency/throughput)

QPS from clients: (250+50)M queries/day / 86400 s/day = ~3500 QPS

Payload size: 5 kB. Max QPS/machine network-wise: 1 Gb /5kB QPS = 25k QPS (network is not a bottleneck)

Query latency (disk): 3ms (seek) + 0.05 ms (read) ~= 3 ms (theoretical max: ~300 QPS → 11 machines)

Query latency (SSD): 0.016 ms (random read) + 0.000625 ms (read) ~= 0.02 ms (max: ~8M QPS → 1 machine)

Query latency (memory): (less than SSD ʛ, will hit other bottlenecks before that)

Proprietary + Confidential

Dimensioning EventStore: key/value store (trade-offs)

Choice: SSD (8 machines)

Machines (storage) # Machines (Latency) Latency

Memory 750 1 0.01 ms

SSD 8 1 0.01 ms

Disk 4 11 3 ms

Proprietary + Confidential

Dimensioning EventStore (recap)

Tailing component: 5 machines

Key-value store (SSD solution): 8 machines

Total: 13 machines

Proprietary + Confidential

Dimensioning EntryIdStore (storage)

EntryId is 16B

Usefulness window of log entries is 10 days

Size per entry Entries per day (globally)

Logtype A 5kB approx. 10 billion (1010)

Logtype B 1kB approx. 250 million (25*107)

Logtype C 1kB approx. 50 million (5*107)

Need to keep in memory at most 250M entries/day * 16 B/entry * 10 days = 40 GB

Footprint: 2 machines per DC

Proprietary + Confidential

Dimensioning EntryIdStore QPS

(Example using the B logtype)

Required throughput: 250 M events/day / 86400 seconds/day ~= 2900 events/second

For each joined entry, there will be at least 3 RPCs (read from Tailer, read from Joiner, write from Joiner)

5800 read QPS

2900 write QPS

Proprietary + Confidential

Scaling EntryIdStore

Each Paxos round requires talking to all members.

Cross-continent latency is in the order of hundreds of ms (e.g., 150ms) → each write RPC will take ~200ms

Having only one in-flight commit round at a time would limit our throughput to 5-6 QPS

Solutions: batching (cheap), sharding (less cheap).

To sustain 2900 write QPS, need 2900 / 6 ~= 480 queries/batch (6 batches/s)

With 2 machines/DC, ~240 write QPS + 2900 read QPS (from RAM) per machine is reasonable.

Proprietary + Confidential

Dimensioning Joiner

The bottleneck is QPS, most of the time spent waiting for I/O.

Average duration of a Join operation:

EntryIdStore read + EventStore read + event creation + EntryIdStore write + write to (remote) disk

 ~1ms + ~10ms + ~20ms + ~200ms + ~20ms = ~250ms

Average concurrent inbound connections: 2900 QPS * 0.25 s/query = 725

Outbound connections: 4 * 2900 QPS ~= 11k

Footprint: 1 machine

{ { { { {

Proprietary + Confidential

Global footprint

Common to B+C (for each DC):

● EventStore: 13 machines

For each log type (B or C):

● Tailer: 1 machine

● Joiner: 1 machine

● EntryIdStore replica: 2 machine

Total: (13 machines/DC + (4 machines/logtype/DC * 2 logtypes)) * 3 DCs = 21 machines/DC * 3 DCs =

62 machines

Proprietary + Confidential

Making the Design more Robust

Remove single points of failure (SPoF): no single-machine components.

● 2 machines each for Tailer and Joiner

Take into account traffic spikes. Assume the input distribution is not uniform but oscillates daily, with spikes

up to 1.25x the average.

● Take 25% more machines

Final count of machines:

(13 machines/DC + (6 machines/logtype/DC * 2 logtypes)) * 3 DCs * 1.25 ~= 95 machines

Proprietary + Confidential

Some additional notes

Reliability:

● each instance must be able to process 50% of the streams

● individual machine failures: stateless and redundant components (e.g., by logtype pair A+B, A+C)

● catch-up capability is ~1.5x. Is this enough?

Observability:

● monitoring, alerting

● correctness verification

Other goodness: code reuse (e.g., tailing component, client-side library for EventIdStore)

Proprietary + Confidential

Salim Virji
salim@google.com

Proprietary + Confidential

References

The system described is a simplification of how Photon, Google's log-joining system, works.

For more information on Photon:

R. Ananthanarayanan et al. - “Photon: Fault-tolerant and Scalable Joining of Continuous Data Streams,” in

Proceedings of ACM SIGMOD’13 (http://research.google.com/pubs/pub41318.html)

For more information on Paxos at Google:

Chandra et al. - “Paxos Made Live - An Engineering Perspective,” in Proceedings of ACM PODC '07

(http://research.google.com/archive/paxos_made_live.html)

http://research.google.com/pubs/pub41318.html
http://research.google.com/archive/paxos_made_live.html

