Randomized load balancing,
caching and Big-O math

Julius Plenz <plenz@google.com> June 2018

A necessary
disclaimer about
explaining maths
live and with slides

Balls into bins
=

Requests into servers

Number of requests

140

120

100

o0}
o

[o)}
o

&
o

N
o

0

Assigning m = 5000 requests randomly to n = 50 servers

LA S S G R LA A L S S R O A G R R

Server number

peak = 125

peak/avg = 1.25

avg = 100

Peak-to-average load is important

e Need to provision resources for peak usage
e Small peak-to-average load means lower cost
e Goal: Make it small and predictable!

Can we predict
the peak load? ¥

*) with high probability

Theorem 1. Let M be the random variable that counts the maximum number
of balls in any bin, if we throw m balls independently and uniformly at random

into n bins. Then Pr[M > ky] = o(1) if a > 1 and Pr[M > ko] =1 —o(1) if
0 < a<1, where

opny (1 + alog(z) nlo%) if " <m <K nlogn
log ZoEn log Zegn /7 polylog(n) — &M
(de — 14 «)logn, if m = c¢-nlogn for some constant c,
ko |= 2+ /27 logn, if nlogn < m < n - polylog(n),
2m 1 1 log(2))
\%—I—\/% (1—agfogg), if m>n - (logn)3.

Here d. denotes a suitable constant depending only on c, cf. the proof of
Lemma 3.

m: Requests n: Servers

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

Consequence #1:
More requests per
server are good

Number of requests

L

0

Assigning m = 100 requests randomly to n = 50 servers

U S S L S U N LA S

Server number

peak =5

peak/avg = 2.50

avg = 2

Number of requests

)
o

5

0

Assigning m = 100 requests randomly to n = 5 servers

peak = 2?2

peak/avg = 1.10
avg = 20

¥ v %, ™

Server number

e/

=l

(From

if polyﬁ)g(n) <m < nlogn,

Peak-to-average ratio:

O(log

h n

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
https://www.maxpixel.net/Horror-Schreck-Fear-Scared-Panic-2175161

(From

iof m = c-nlogn for some constant c,

Peak-to-average ratio:

O(1)

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
http://pngimg.com/download/16002

Consequence #2:
Don't scale servers and
requests linearly 1:1

(From

X 10,000

10x growth

if polyﬁ)g(n) <m < nlogn,

if m = c-nlogn for some consta

N

X 100,000

500 servers
e

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

Number of requests

140

120

100

e}
o

(o)}
o

IS
o

N
o

0

Assighing m = 10000 requests randomly to n = 100 servers

N9 K) o o B 5 © © & & & &)) RS & o P P

Server number

peak = 125

peak/avg = 1.25

avg = 100

(From

X 10,000

10x growth

if polygg(n) <m <L nlogn,

if m = c-nlogn for some constant c,

X 100,000

336 servers
R ——

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

How can | >>> import numpy as np

. >>> import scipy
calculate this >>> current_m = 10000

myself? >>> current_n = 50
>>>c=m/ (n * np.log(n))

>>> target_m = 10 * current_m
>>> target_n = np.exp(np.real(
scipy.special. lambertw(target m / c)))

>>> print target_n

336.21

Give me more
than anecdotal
evidencel

Number of requests

140

120

100

o0}
o

(o))
o

ey
o

N
o

0

Assigning m = 10000 requests randomly to n = 100 servers

peak = 125

peak/avg = 1.25

avg = 100

Server number

From observations to density estimate (n = 100, m = 10,000)

14

12

10

1.1

1.2 1.3 1.4
Peak to average load ratio

1.5

1.6

From observations to density estimate (n = 100, m = 10,000)

14

12

10

1.1

1.2 1.3 1.4
Peak to average load ratio

1.5

1.6

From observations to density estimate (n = 100, m = 10,000)

14

12

10

1.1

1.2 1.3 1.4
Peak to average load ratio

1.5

1.6

Kernel Density Estimate plot of peak-to-average load ratio for different n, m

14

12

10

1.1

T
—— n =10, m= 1000
—— n=25,m=2500 L
— n =50, m= 5000

—— n=75,m=7500

— n =100, m = 10000
—— n =250, m = 25000
—— n =500, m= 50000
—— n =750, m= 75000
—— n=1000, m = 100000
~— n=1500, m = 150000
~—— n=2000, m= 200000

1.2 1.3 1.4
Peak to average load ratio

15 1.6

14

12

10

Kernel Density Estimate plot of peak-to-average load ratio for different n, m

VA

1.2

k,/avg = 1.332

n =10, m = 460
n=25 m=1609

n =50, m= 3912
n=75 m=6476

n =100, m =9210

n =250, m = 27607

n =500, m = 62146

n =750, m = 99301

n = 1000, m = 138155
n = 1500, m = 219396
n = 2000, m = 304036

1.3
Peak to average load ratio

1.4

15

How can | >>> import numpy as np
calculate the likely >>> mport scipy

peak—to—average >>> C = 20 # Per choice of prev example

ratio myself? >>> max(
np.real(c * np.exp(
1 + scipy.special.lambertw(
(1 -c¢c)/ (c*np.e),
k=k)))
for k in (0, -1)) / c

1.332

Bounding the
peak to average
load ratio for a
key-value store

Randomized Server
=

Randomized Location

Application+

Queries
Front-End Small & Fast
Load Balancer Front-End Cache

/ /]
Node Selection Based on
Random Data Partitioning

2

Back-End Nodes

From paper

https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

How many items should we cache?

Fraction of queries

Cached keys

2 . 6=l

c c+1c+2 ...

key #

Uncached keys

to

i ..] .. m

From “Small Cache, Big Effect” paper

https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

2+ /27 logn,

P

Many, many more
keys than servers.

Now do some clever
substitutions

N

if nlogn < m < n - polylog(n),

(From

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

You should cache O(N+log(N)) keys!

Cache of Size O(nlog n) If we choose a cache size of ¢ = k -
nlogn + 1 where k is a constant factor, the load bound shown in
Eq. (10) becomes constant in the system size:

1 2a*

From “Small Cache, Big Effect” paper

https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

Recap

Takeaway Randomized Load

#1 Balancing is very

good if you have
many “things”

Tak Randomized Load
akeaway Balancing becomes

..L.Lz .
worse if you scale

your system in the
wrong way

Takeaway Pay attention to the

4 ' 1 h
#3 size of your cache

when you scale your
system

Thanks!

Questions?

