Randomized load balancing,
caching and Big-O math
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A necessary
disclaimer about
explaining maths
live and with slides



Balls into bins
=

Requests into servers
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Assigning m = 5000 requests randomly to n = 50 servers
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Server number

peak = 125

peak/avg = 1.25

avg = 100



Peak-to-average load is important

e Need to provision resources for peak usage
e Small peak-to-average load means lower cost
e Goal: Make it small and predictable!



Can we predict
the peak load? ¥

*) with high probability



Theorem 1. Let M be the random variable that counts the maximum number
of balls in any bin, if we throw m balls independently and uniformly at random

into n bins. Then Pr[M > ky] = o(1) if a > 1 and Pr[M > ko] =1 —o(1) if
0 < a<1, where

opny (1 + alog(z) nlo%) if " <m <K nlogn
log ZoEn log Zegn /7 polylog(n) — &M
(de — 14 «)logn, if m = c¢-nlogn for some constant c,
ko |= 2+ /27 logn, if nlogn < m < n - polylog(n),
2m 1 1 log(2) )
\%—I—\/% (1—agfogg), if m>n - (logn)3.

Here d. denotes a suitable constant depending only on c, cf. the proof of
Lemma 3.

m: Requests n: Servers



http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

Consequence #1:
More requests per
server are good
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Assigning m = 100 requests randomly to n = 50 servers
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Assigning m = 100 requests randomly to n = 5 servers

peak = 2?2

peak/avg = 1.10
avg = 20

¥ v %, ™

Server number

e/



=l

(From

if polyﬁ)g(n) <m < nlogn,

Peak-to-average ratio:

O(log

h n


http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
https://www.maxpixel.net/Horror-Schreck-Fear-Scared-Panic-2175161

(From

iof m = c-nlogn for some constant c,

Peak-to-average ratio:

O(1)



http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
http://pngimg.com/download/16002

Consequence #2:
Don't scale servers and
requests linearly 1:1



(From

X 10,000

10x growth

if polyﬁ)g(n) <m < nlogn,

if m = c-nlogn for some consta

N

X 100,000

500 servers
e



http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
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Assighing m = 10000 requests randomly to n = 100 servers
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Server number

peak = 125

peak/avg = 1.25

avg = 100









(From

X 10,000

10x growth

if polygg(n) <m <L nlogn,

if m = c-nlogn for some constant c,

X 100,000

336 servers
R ——



http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

How can | >>> import numpy as np

. >>> import scipy
calculate this >>> current_m = 10000

myself? >>> current_n = 50
>>>c=m/ (n * np.log(n))

>>> target_m = 10 * current_m
>>> target_n = np.exp(np.real(
scipy.special. lambertw(target m / c)))

>>> print target_n

336.21




Give me more
than anecdotal
evidencel
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Server number



From observations to density estimate (n = 100, m = 10,000)
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From observations to density estimate (n = 100, m = 10,000)
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Kernel Density Estimate plot of peak-to-average load ratio for different n, m
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Kernel Density Estimate plot of peak-to-average load ratio for different n, m
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How can | >>> import numpy as np
calculate the likely >>> mport scipy

peak—to—average >>> C = 20 # Per choice of prev example

ratio myself? >>> max(
np.real(c * np.exp(
1 + scipy.special.lambertw(
(1 -c¢c)/ (c*np.e),
k=k)))
for k in (0, -1)) / c

1.332




Bounding the
peak to average
load ratio for a
key-value store



Randomized Server
=

Randomized Location



Application+

Queries
Front-End Small & Fast
Load Balancer Front-End Cache

/ /]
Node Selection Based on
Random Data Partitioning

2

Back-End Nodes

From paper


https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

How many items should we cache?

Fraction of queries

Cached keys

2 . 6=l

c c+1c+2 ...

key #

Uncached keys

to

i .. ] .. m

From “Small Cache, Big Effect” paper



https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

2+ /27 logn,

P

Many, many more
keys than servers.

Now do some clever
substitutions

N

if nlogn < m < n - polylog(n),

(From


http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

You should cache O(N+log(N)) keys!

Cache of Size O(nlog n) If we choose a cache size of ¢ = k -
nlogn + 1 where k is a constant factor, the load bound shown in
Eq. (10) becomes constant in the system size:

1 2a*

From “Small Cache, Big Effect” paper



https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

Recap



Takeaway Randomized Load

#1 Balancing is very

good if you have
many “things”




Tak Randomized Load
akeaway Balancing becomes

..L.Lz .
# worse if you scale

your system in the
wrong way




Takeaway Pay attention to the

4 ' 1 h
#3 size of your cache

when you scale your
system




Thanks!

Questions?



