
Randomized load balancing,
caching and Big-O math
Julius Plenz <plenz@google.com> June 2018

A necessary
disclaimer about
explaining maths
live and with slides

Balls into bins
⇔

Requests into servers

Peak-to-average load is important

● Need to provision resources for peak usage
● Small peak-to-average load means lower cost
● Goal: Make it small and predictable!

Can we predict
the peak load? *)

*) with high probability

m: Requests n: Servers “Balls into Bins” paper

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

Consequence #1:
More requests per
server are good

 squint
 ≈ O(log n)

Peak-to-average ratio:

 O(log n)

(From “Balls into Bins”)

(Image source)

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
https://www.maxpixel.net/Horror-Schreck-Fear-Scared-Panic-2175161

Peak-to-average ratio:

O(1)

(From “Balls into Bins”)

(Image source)

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf
http://pngimg.com/download/16002

Consequence #2:
Don’t scale servers and
requests linearly 1:1

50 servers

X 10,000

500 servers

X 100,000

10x growth

(From “Balls into Bins”)

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

50 servers

X 10,000

336 servers

X 100,000

10x growth

(From “Balls into Bins”)

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

>>> import numpy as np
>>> import scipy
>>> current_m = 10000
>>> current_n = 50
>>> c = m / (n * np.log(n))

>>> target_m = 10 * current_m
>>> target_n = np.exp(np.real(
... scipy.special.lambertw(target_m / c)))

>>> print target_n

336.21

How can I
calculate this
myself?

Give me more
than anecdotal *)
evidence!

*) created with a random
 number generator

Repeat 500x

kα / avg = 1.332

>>> import numpy as np
>>> import scipy

>>> c = 20 # Per choice of prev example
>>> max(
... np.real(c * np.exp(
... 1 + scipy.special.lambertw(
... (1 - c) / (c * np.e),
... k=k)))
... for k in (0, -1)) / c

1.332

How can I
calculate the likely
peak-to-average
ratio myself?

Bounding the
peak to average
load ratio for a
key-value store

Randomized Server
⇔

Randomized Location

From “Small Cache, Big Effect” paper

https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

From “Small Cache, Big Effect” paper

How many items should we cache?

https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

Many, many more
keys than servers.

Now do some clever
substitutions

(From “Balls Into Bins”)

http://wwwmayr.informatik.tu-muenchen.de/personen/raab/publ/balls.pdf

From “Small Cache, Big Effect” paper

You should cache O(N•log(N)) keys!

https://www.cs.cmu.edu/~dga/papers/loadbal-socc2011.pdf

Recap

Takeaway
#1

Randomized Load
Balancing is very
good if you have
many “things”

Takeaway
#2

Randomized Load
Balancing becomes
worse if you scale
your system in the
wrong way

Takeaway
#3

Pay attention to the
size of your cache
when you scale your
system

Thanks!

Questions?

