
Call to ARMs:
adopting an arm64 server into x86 infrastructure
Ignat Korchagin @secumod

$ whoami

● Platform engineer at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming

Why?

Vendor lock-in

Save the power

Cut equipment costs

Security

Why ARM64?

Why ARM64?

● performs well in the mobile/IoT space

Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient

Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient
● huge developer community

Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient
● huge developer community
● first class support in Linux

Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient
● huge developer community
● first class support in Linux
● established tools

Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient
● huge developer community
● first class support in Linux
● established tools
● > 32 bits

Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient
● huge developer community
● first class support in Linux
● established tools
● > 32 bits
● mitigates the RISC ;)

Initial benchmarks

So you have an ARM64 server

● Falkor core
● 46 cores
● 2.5 GHz
● Thermal design power

120W
○ compared to 170W Skylake

Public key cryptography (single core)

Public key cryptography (all cores)

Symmetric cryptography (single core)

Symmetric cryptography (all cores)

Gzip (single core)

Gzip (all cores)

Brotli (single core)

Brotli (all cores)

nginx (with power!)

Putting an ARM64 server in a DC

Initial integration in the DC

Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and
services

nginxnginxOther apps and
services

Consider your developers

Building packages for ARM64

production arch != developer arch

Building packages for ARM64

production arch != developer arch

● need to (cross-)compile packages for a
different architecture

Building packages for ARM64

production arch != developer arch

● need to (cross-)compile packages for a
different architecture

● cannot run even basic unit tests locally

Building packages for ARM64 options

● cross-compiling
○ relatively easy, but requires many changes
○ potential side-effects (ex. library paths)

Building packages for ARM64 options

● cross-compiling
○ relatively easy, but requires many changes
○ potential side-effects (ex. library paths)

● native builds on arm64 servers
○ no spare hardware
○ chicken-and-egg problem: requires setting up an

arm64 server and we need packages for it

Building packages for ARM64 options

● cross-compiling
○ relatively easy, but requires many changes
○ potential side-effects (ex. library paths)

● native builds on arm64 servers
○ no spare hardware
○ chicken-and-egg problem: requires setting up an

arm64 server and we need packages for it
● ???

Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and
services

nginxnginxOther apps and
services

Cross-compiling Linux kernel
● need a cross-compiler

○ sudo apt-get install crossbuild-essential-arm64

Cross-compiling Linux kernel
● need a cross-compiler

○ sudo apt-get install crossbuild-essential-arm64

● need to adjust kernel build system to call the
cross-compiler
○ make (xxxconfig) => make ARCH=arm64

CROSS_COMPILE=aarch64-linux-gnu- O=arm64build (xxxconfig)

Cross-compiling Linux kernel
● need a cross-compiler

○ sudo apt-get install crossbuild-essential-arm64

● need to adjust kernel build system to call the
cross-compiler
○ make (xxxconfig) => make ARCH=arm64

CROSS_COMPILE=aarch64-linux-gnu- O=arm64build (xxxconfig)

● need a working kernel configuration file
○ cp config-amd64 .config

○ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- oldconfig

ARM64 Linux kernel caveats
● need to trace down and install many arm64 build

dependencies for perf
○ otherwise perf is very limited

ARM64 Linux kernel caveats
● need to trace down and install many arm64 build

dependencies for perf
○ otherwise perf is very limited

● need to trace down and enable required hardware
modules
○ our OOB console access did not work until we enabled some

non-standard serial driver

ARM64 Linux kernel caveats
● need to trace down and install many arm64 build

dependencies for perf
○ otherwise perf is very limited

● need to trace down and enable required hardware
modules
○ our OOB console access did not work until we enabled some

non-standard serial driver
● by default your kernel will be configured with 39-bit

virtual address space
○ allows to address up to 512GB
○ https://www.kernel.org/doc/Documentation/arm64/memory.txt

Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and
services

nginxnginxOther apps and
services

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no easy way to do cross-arch debootstrap
○ https://wiki.debian.org/EmDebian/CrossDebootstrap

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no easy way to do cross-arch debootstrap
○ https://wiki.debian.org/EmDebian/CrossDebootstrap

● requires many changes and complex logic
in both the build system and build
environment

Docker

Cloudflare build system

yaml file
(build environment)

Makefile
(build recipe)

Docker

Cloudflare build system

yaml file
(build environment)

Makefile
(build recipe)

build deps,
tools,

configs

Docker

Cloudflare build system

yaml file
(build environment)

Makefile
(build recipe)

build deps,
tools,

configs
build steps

Cloudflare build system
● Docker-based

○ a Makefile - how to build
○ a yaml file - build dependencies and environment

Cloudflare build system
● Docker-based

○ a Makefile - how to build
○ a yaml file - build dependencies and environment

● reproducible in CI

Cloudflare build system
● Docker-based

○ a Makefile - how to build
○ a yaml file - build dependencies and environment

● reproducible in CI

● can we emulate ARM64 environment with
Docker?
○ without virtual machines
○ change only the build environment, not the recipe

QEMU user emulation

● dynamically translates foreign architecture
code upon execution

● allows to execute arm64 binary directly on
x86

qemu-user in action
ignat@dev:~$ gcc -static -o helloarch helloarch.c

ignat@dev:~$ readelf -h helloarch | grep -i machine

 Machine: Advanced Micro Devices X86-64

ignat@dev:~$./helloarch

Hello, x86_64!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o helloarch helloarch.c

ignat@dev:~$ readelf -h helloarch | grep -i machine

 Machine: AArch64

ignat@dev:~$./helloarch

bash: ./helloarch: cannot execute binary file: Exec format error

ignat@dev:~$ sudo apt-get install qemu-user-static

ignat@dev:~$ qemu-aarch64-static ./helloarch

Hello, aarch64!

binfmt_misc Linux kernel module

● allows to register custom “interpreters” for
specific executables and scripts

● can specify executables by file header or
extension

https://www.kernel.org/doc/html/v4.14/admin-guide/binfmt-misc.html

binfmt_misc in action
ignat@dev:~$./helloarch

-bash: ./helloarch: cannot execute binary file: Exec format error

ignat@dev:~$ echo
":qemu-aarch64:M::\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x02\x00\xb7\x00:\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\x
ff\xff\xff\xff\xff\xff\xfe\xff\xff\xff:/usr/bin/qemu-aarch64-stati
c:OC" | sudo tee -a /proc/sys/fs/binfmt_misc/register

:qemu-aarch64:M::\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x
00\x00\x02\x00\xb7\x00:\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xf
f\xff\xff\xff\xff\xff\xfe\xff\xff\xff:/usr/bin/qemu-aarch64-static
:OC

ignat@dev:~$./helloarch

Hello, aarch64!

binfmt_misc in action

User
process

binfmt_misc

exec /bin/foo

read
header/extension

find registered
format

execute via
interpreter

/qemu-aarch64
/bin/foo

Combining QEMU, binfmt_misc and Docker
ignat@dev:~$ cat Dockerfile

FROM arm64v8/debian:stretch

COPY qemu-aarch64-static /usr/bin/qemu-aarch64-static

ignat@dev:~$ docker build -t arm64/stretch .

...

Successfully tagged arm64/stretch:latest

ignat@dev:~$ docker run --rm -it arm64/stretch

root@4e466498353f:/# uname -m

aarch64

Foreign arch containers with just qemu
● QEMU translates every system call before

passing it on to the kernel

QEMU user emulation

QEMU user emulation

ARM64 user
process

Linux kernel

QEMU user emulation

QEMU user emulation

ARM64 user
process

exec
/bin/foo

Linux kernel

QEMU user emulation

QEMU user emulation

ARM64 user
process

exec
/bin/foo

translate
ARM64 exec -> x86 exec

Linux kernel

QEMU user emulation

QEMU user emulation

ARM64 user
process

exec
/bin/foo

translate
ARM64 exec -> x86 exec

x86 exec
/bin/foo

Linux kernel

Foreign arch containers with just qemu
● QEMU translates every system call before

passing it on to the kernel
● Why not replicate binfmt_misc functionality in

QEMU itself?

QEMU user emulation

Modified QEMU user emulation

ARM64 user
process

exec
/bin/foo

translate
ARM64 exec -> x86 exec

Linux kernel

QEMU user emulation

Modified QEMU user emulation

ARM64 user
process

exec
/bin/foo

translate
ARM64 exec -> x86 exec

Linux kernel

rewrite
exec /bin/foo -> exec /qemu-user /bin/foo

QEMU user emulation

Modified QEMU user emulation

ARM64 user
process

exec
/bin/foo

translate
ARM64 exec -> x86 exec

x86 exec
/qemu-user /bin/foo

Linux kernel

rewrite
exec /bin/foo -> exec /qemu-user /bin/foo

Foreign arch containers with just qemu
● QEMU translates every system call before

passing it on to the kernel
● Why not replicate binfmt_misc functionality in

QEMU itself?
● Don’t need to rely on external binfmt_misc

functionality and can create truly
self-contained foreign architecture Docker
images

Foreign arch containers with just qemu

Foreign arch containers with just qemu

https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/

ARM64 Debian Stretch Dockerfile
FROM debian:stretch-slim as builder

RUN apt-get update && apt-get install -y build-essential python
patch libglib2.0-dev libfdt-dev libpixman-1-dev zlib1g-dev wget

RUN wget https://download.qemu.org/qemu-2.12.0.tar.xz && tar xf
qemu-2.12.0.tar.xz

COPY qemu-execve.patch /qemu-execve.patch

RUN patch -d qemu-2.12.0 -p1 < qemu-execve.patch && \

 mkdir qemu-build && cd qemu-build && \

 /qemu-2.12.0/configure --static
--target-list=aarch64-linux-user --disable-system && \

 make

ARM64 Debian Stretch Dockerfile (cont)
FROM arm64v8/debian:stretch-slim

COPY --from=builder /qemu-build/aarch64-linux-user/qemu-aarch64
/qemu-aarch64

SHELL ["/qemu-aarch64", "/bin/sh", "-c"]

RUN apt-get update && apt-get install -y --no-install-recommends
libcap2-bin && \

 setcap cap_setuid,cap_setgid+ep /qemu-aarch64 && \

 apt-get remove --purge -y libcap2-bin && apt-get autoremove -y
&& \

 rm -rf /var/lib/apt/lists/*

ENTRYPOINT ["/qemu-aarch64"]

CMD ["/bin/bash"]

Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and
services

nginxnginxOther apps and
services

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no changes to the build system

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no changes to the build system
● only a single toggle to use ARM64 Debian

Stretch as a base instead of x86 one

ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no changes to the build system
● only a single toggle to use ARM64 Debian

Stretch as a base instead of x86 one
● works on x86-based CI out of the box

Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and
services

nginxnginxOther apps and
services

Porting user-space applications
● reused arm64 Docker based approach

○ reduced avg package porting time from days to minutes
○ no cross-compiling problems, no foreign arch dependency tracing
○ allows devs and CI to run basic tests

Porting user-space applications
● reused arm64 Docker based approach

○ reduced avg package porting time from days to minutes
○ no cross-compiling problems, no foreign arch dependency tracing
○ allows devs and CI to run basic tests

● most of the stack was done in ~1 month

Porting user-space applications
● reused arm64 Docker based approach

○ reduced avg package porting time from days to minutes
○ no cross-compiling problems, no foreign arch dependency tracing
○ allows devs and CI to run basic tests

● most of the stack was done in ~1 month
● although slower build times due to

emulation layer
○ ex. nginx takes 2m instead of usual 10s (~10x slower)

Slower build times - it’s a feature!

Porting timeline

● started porting applications beginning of
March

Porting timeline

● started porting applications beginning of
March

● March 23rd - served first production DNS
request

Porting timeline

● started porting applications beginning of
March

● March 23rd - served first production DNS
request

● April 18th - served first production HTTPS
request with cached content

ARM64 in production

How is it doing now?

nginx-cache CPU time

nginx-cache user CPU time

nginx-cache system CPU time

RRDNS CPU time

RRDNS memory usage

Quicksilver CPU time

Quicksilver memory cache

Conclusions
● ARM64 is a competitive server architecture

○ most software works OK out of the box
● Migrating to ARM64 is not that hard

○ popular OSes support ARM64 already
● QEMU user emulation + Docker provides a low-cost

quick-start solution to port in-house software to
ARM64
○ in both hw costs and effort cost
○ minimal disruption to the dev process

Some links
● https://blog.cloudflare.com/arm-takes-wing/
● https://blog.cloudflare.com/neon-is-the-new-black/
● https://blog.cloudflare.com/using-go-as-a-scripting-la

nguage-in-linux/
● https://www.kernel.org/doc/html/latest/admin-guide/

binfmt-misc.html
● https://resin.io/blog/building-arm-containers-on-any-

x86-machine-even-dockerhub/

https://blog.cloudflare.com/arm-takes-wing/
https://blog.cloudflare.com/neon-is-the-new-black/
https://blog.cloudflare.com/using-go-as-a-scripting-language-in-linux/
https://blog.cloudflare.com/using-go-as-a-scripting-language-in-linux/
https://www.kernel.org/doc/html/latest/admin-guide/binfmt-misc.html
https://www.kernel.org/doc/html/latest/admin-guide/binfmt-misc.html
https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/
https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/

Thank you!

