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$ whoami

● Platform engineer at Cloudflare

● Passionate about security and crypto

● Enjoy low level programming



Why?



Vendor lock-in



Save the power



Cut equipment costs



Security
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Why ARM64?

● performs well in the mobile/IoT space
● potentially more power-efficient
● huge developer community
● first class support in Linux
● established tools
● > 32 bits
● mitigates the RISC ;)



Initial benchmarks



So you have an ARM64 server

● Falkor core
● 46 cores
● 2.5 GHz
● Thermal design power 

120W
○ compared to 170W Skylake



Public key cryptography (single core)



Public key cryptography (all cores)
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Symmetric cryptography (all cores)
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Gzip (all cores)
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Brotli (all cores)



nginx (with power!)



Putting an ARM64 server in a DC



Initial integration in the DC



Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and 
services

nginxnginxOther apps and 
services



Consider your developers
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Building packages for ARM64

production arch != developer arch

● need to (cross-)compile packages for a 
different architecture

● cannot run even basic unit tests locally
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Building packages for ARM64 options

● cross-compiling
○ relatively easy, but requires many changes
○ potential side-effects (ex. library paths)

● native builds on arm64 servers
○ no spare hardware
○ chicken-and-egg problem: requires setting up an 

arm64 server and we need packages for it
● ???



Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and 
services

nginxnginxOther apps and 
services
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Cross-compiling Linux kernel
● need a cross-compiler

○ sudo apt-get install crossbuild-essential-arm64

● need to adjust kernel build system to call the 
cross-compiler
○ make (xxxconfig) => make ARCH=arm64 

CROSS_COMPILE=aarch64-linux-gnu- O=arm64build (xxxconfig)

● need a working kernel configuration file
○ cp config-amd64 .config

○ make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- oldconfig
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ARM64 Linux kernel caveats
● need to trace down and install many arm64 build 

dependencies for perf
○ otherwise perf is very limited

● need to trace down and enable required hardware 
modules
○ our OOB console access did not work until we enabled some 

non-standard serial driver
● by default your kernel will be configured with 39-bit 

virtual address space
○ allows to address up to 512GB
○ https://www.kernel.org/doc/Documentation/arm64/memory.txt



Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and 
services

nginxnginxOther apps and 
services
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ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no easy way to do cross-arch debootstrap
○ https://wiki.debian.org/EmDebian/CrossDebootstrap

● requires many changes and complex logic 
in both the build system and build 
environment
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Docker

Cloudflare build system

yaml file
(build environment)

Makefile
(build recipe)

build deps, 
tools, 

configs
build steps
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Cloudflare build system
● Docker-based

○ a Makefile - how to build
○ a yaml file - build dependencies and environment

● reproducible in CI

● can we emulate ARM64 environment with 
Docker?
○ without virtual machines
○ change only the build environment, not the recipe



QEMU user emulation

● dynamically translates foreign architecture 
code upon execution

● allows to execute arm64 binary directly on 
x86



qemu-user in action
ignat@dev:~$ gcc -static -o helloarch helloarch.c

ignat@dev:~$ readelf -h helloarch | grep -i machine

  Machine:                           Advanced Micro Devices X86-64

ignat@dev:~$ ./helloarch

Hello, x86_64!

ignat@dev:~$ aarch64-linux-gnu-gcc -static -o helloarch helloarch.c

ignat@dev:~$ readelf -h helloarch | grep -i machine

  Machine:                           AArch64

ignat@dev:~$ ./helloarch

bash: ./helloarch: cannot execute binary file: Exec format error

ignat@dev:~$ sudo apt-get install qemu-user-static

ignat@dev:~$ qemu-aarch64-static ./helloarch

Hello, aarch64!



binfmt_misc Linux kernel module

● allows to register custom “interpreters” for 
specific executables and scripts

● can specify executables by file header or 
extension

https://www.kernel.org/doc/html/v4.14/admin-guide/binfmt-misc.html



binfmt_misc in action
ignat@dev:~$ ./helloarch

-bash: ./helloarch: cannot execute binary file: Exec format error

ignat@dev:~$ echo 
":qemu-aarch64:M::\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x02\x00\xb7\x00:\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\x
ff\xff\xff\xff\xff\xff\xfe\xff\xff\xff:/usr/bin/qemu-aarch64-stati
c:OC" | sudo tee -a /proc/sys/fs/binfmt_misc/register

:qemu-aarch64:M::\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x
00\x00\x02\x00\xb7\x00:\xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xf
f\xff\xff\xff\xff\xff\xfe\xff\xff\xff:/usr/bin/qemu-aarch64-static
:OC

ignat@dev:~$ ./helloarch

Hello, aarch64!



binfmt_misc in action

User 
process

binfmt_misc

exec /bin/foo

read 
header/extension

find registered 
format

execute via 
interpreter

/qemu-aarch64 
/bin/foo



Combining QEMU, binfmt_misc and Docker
ignat@dev:~$ cat Dockerfile

FROM arm64v8/debian:stretch

COPY qemu-aarch64-static /usr/bin/qemu-aarch64-static

ignat@dev:~$ docker build -t arm64/stretch .

...

Successfully tagged arm64/stretch:latest

ignat@dev:~$ docker run --rm -it arm64/stretch

root@4e466498353f:/# uname -m

aarch64



Foreign arch containers with just qemu
● QEMU translates every system call before 

passing it on to the kernel
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QEMU user emulation

Modified QEMU user emulation

ARM64 user 
process

exec 
/bin/foo

translate 
ARM64 exec -> x86 exec

x86 exec 
/qemu-user /bin/foo

Linux kernel

rewrite
exec /bin/foo -> exec /qemu-user /bin/foo 



Foreign arch containers with just qemu
● QEMU translates every system call before 

passing it on to the kernel
● Why not replicate binfmt_misc functionality in 

QEMU itself?
● Don’t need to rely on external binfmt_misc 

functionality and can create truly 
self-contained foreign architecture Docker 
images



Foreign arch containers with just qemu



Foreign arch containers with just qemu

https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/



ARM64 Debian Stretch Dockerfile
FROM debian:stretch-slim as builder

RUN apt-get update && apt-get install -y build-essential python 
patch libglib2.0-dev libfdt-dev libpixman-1-dev zlib1g-dev wget

RUN wget https://download.qemu.org/qemu-2.12.0.tar.xz && tar xf 
qemu-2.12.0.tar.xz

COPY qemu-execve.patch /qemu-execve.patch

RUN patch -d qemu-2.12.0 -p1 < qemu-execve.patch && \

    mkdir qemu-build && cd qemu-build && \

    /qemu-2.12.0/configure --static 
--target-list=aarch64-linux-user --disable-system && \

    make



ARM64 Debian Stretch Dockerfile (cont)
FROM arm64v8/debian:stretch-slim

COPY --from=builder /qemu-build/aarch64-linux-user/qemu-aarch64 
/qemu-aarch64

SHELL ["/qemu-aarch64", "/bin/sh", "-c"]

RUN apt-get update && apt-get install -y --no-install-recommends 
libcap2-bin && \

    setcap cap_setuid,cap_setgid+ep /qemu-aarch64 && \

    apt-get remove --purge -y libcap2-bin && apt-get autoremove -y 
&& \

    rm -rf /var/lib/apt/lists/*

ENTRYPOINT ["/qemu-aarch64"]

CMD ["/bin/bash"]
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ARM64 baseimg
● just a minimal Debian image

○ debootstrap --variant=minbase stretch baseimg
○ install config-management agent (salt-minion)
○ package baseimg folder as initramfs

● no changes to the build system
● only a single toggle to use ARM64 Debian 

Stretch as a base instead of x86 one
● works on x86-based CI out of the box



Edge server software stack

Linux kernel

RAM-based basic root filesystem

nginxnginxnginx
nginxnginxOther apps and 
services

nginxnginxOther apps and 
services
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○ reduced avg package porting time from days to minutes
○ no cross-compiling problems, no foreign arch dependency tracing
○ allows devs and CI to run basic tests



Porting user-space applications
● reused arm64 Docker based approach

○ reduced avg package porting time from days to minutes
○ no cross-compiling problems, no foreign arch dependency tracing
○ allows devs and CI to run basic tests

● most of the stack was done in ~1 month



Porting user-space applications
● reused arm64 Docker based approach

○ reduced avg package porting time from days to minutes
○ no cross-compiling problems, no foreign arch dependency tracing
○ allows devs and CI to run basic tests

● most of the stack was done in ~1 month
● although slower build times due to 

emulation layer
○ ex. nginx takes 2m instead of usual 10s (~10x slower)



Slower build times - it’s a feature!
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Porting timeline

● started porting applications beginning of 
March

● March 23rd - served first production DNS 
request

● April 18th - served first production HTTPS 
request with cached content



ARM64 in production



How is it doing now?



nginx-cache CPU time



nginx-cache user CPU time



nginx-cache system CPU time



RRDNS CPU time



RRDNS memory usage



Quicksilver CPU time



Quicksilver memory cache



Conclusions
● ARM64 is a competitive server architecture

○ most software works OK out of the box
● Migrating to ARM64 is not that hard

○ popular OSes support ARM64 already
● QEMU user emulation + Docker provides a low-cost 

quick-start solution to port in-house software to 
ARM64
○ in both hw costs and effort cost
○ minimal disruption to the dev process



Some links
● https://blog.cloudflare.com/arm-takes-wing/
● https://blog.cloudflare.com/neon-is-the-new-black/
● https://blog.cloudflare.com/using-go-as-a-scripting-la

nguage-in-linux/
● https://www.kernel.org/doc/html/latest/admin-guide/

binfmt-misc.html
● https://resin.io/blog/building-arm-containers-on-any-

x86-machine-even-dockerhub/

https://blog.cloudflare.com/arm-takes-wing/
https://blog.cloudflare.com/neon-is-the-new-black/
https://blog.cloudflare.com/using-go-as-a-scripting-language-in-linux/
https://blog.cloudflare.com/using-go-as-a-scripting-language-in-linux/
https://www.kernel.org/doc/html/latest/admin-guide/binfmt-misc.html
https://www.kernel.org/doc/html/latest/admin-guide/binfmt-misc.html
https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/
https://resin.io/blog/building-arm-containers-on-any-x86-machine-even-dockerhub/


Thank you!


