You get what you measure why metrics are important

Kumar Srinivasamurthy
Bing & Cortana Engineering
@00kumars

Examples

Metric definition, education and reliability of monitors

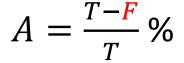
https://mars.jpl.nasa.gov/msp98/news/mco990930.html

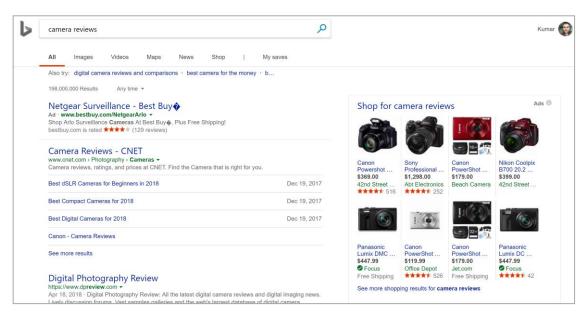
https://www.nytimes.com/1983/07/30/us/jet-s-fuel-ran-out-after-metric-conversion-errors.html

Availability & Downtime

Availability %	Downtime per year	Downtime per month	Downtime per week	Downtime per day
90% ("one nine")	36.5 days	72 hours	16.8 hours	2.4 hours
95%	18.25 days	36 hours	8.4 hours	1.2 hours
97%	10.96 days	21.6 hours	5.04 hours	43.2 minutes
98%	7.30 days	14.4 hours	3.36 hours	28.8 minutes
99% ("two nines")	3.65 days	7.20 hours	1.68 hours	14.4 minutes
99.5%	1.83 days	3.60 hours	50.4 minutes	7.2 minutes
99.8%	17.52 hours	86.23 minutes	20.16 minutes	2.88 minutes
99.9% ("three nines")	8.76 hours	43.8 minutes	10.1 minutes	1.44 minutes
99.95%	4.38 hours	21.56 minutes	5.04 minutes	43.2 seconds
99.99% ("four nines")	52.56 minutes	4.38 minutes	1.01 minutes	8.66 seconds
99.995%	26.28 minutes	2.16 minutes	30.24 seconds	4.32 seconds
99.999% ("five nines")	5.26 minutes	25.9 seconds	6.05 seconds	864.3 milliseconds
99.9999% ("six nines")	31.5 seconds	2.59 seconds	604.8 milliseconds	86.4 milliseconds
99.99999% ("seven nines")	3.15 seconds	262.97 milliseconds	60.48 milliseconds	8.64 milliseconds
99.999999% ("eight nines")	315.569 milliseconds	26.297 milliseconds	6.048 milliseconds	0.864 milliseconds
99.9999999% ("nine nines")	31.5569 milliseconds	2.6297 milliseconds	0.6048 milliseconds	0.0864 milliseconds

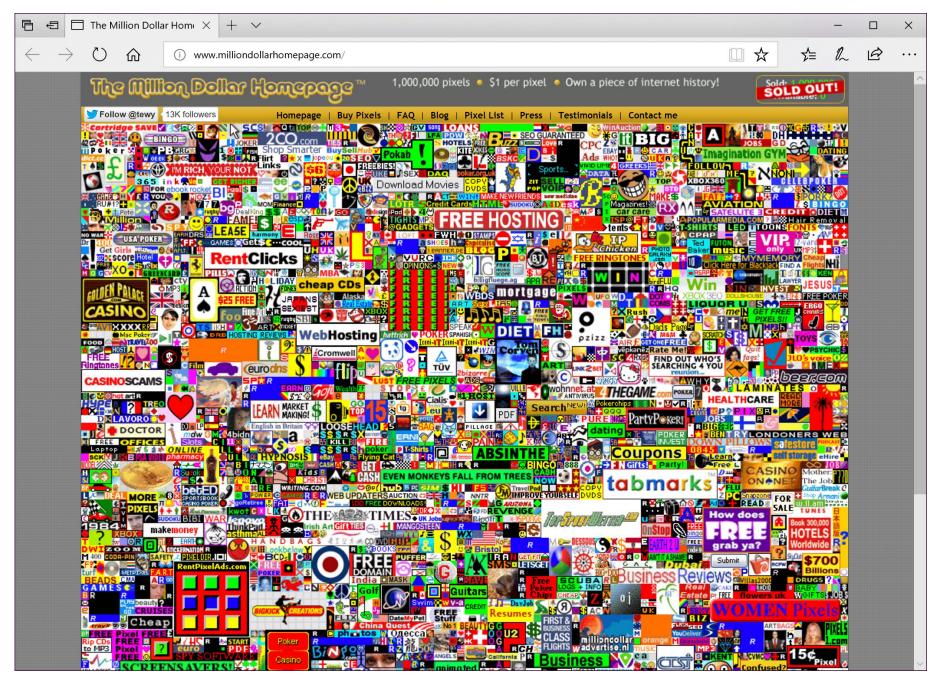
Simplified formula:


 $Availability = \frac{(Total\ Requests - Failed\ Requests)}{Total\ Requests}\%$

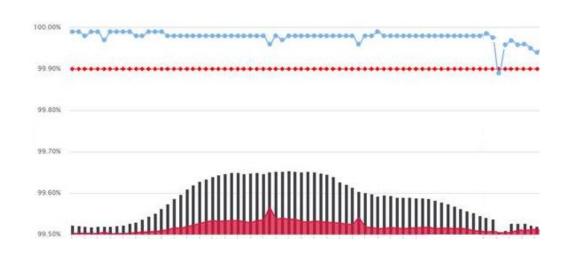

$$A = \frac{T - F}{T} \%$$

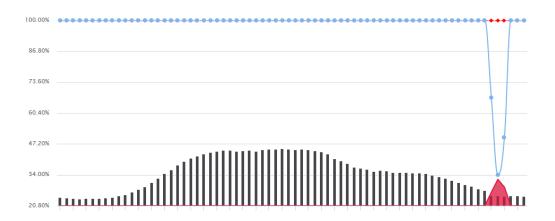
https://en.wikipedia.org/wiki/High_availability

Hitting the target and missing the point



- Bad config led to no web results to the user, just ads
- Remember that one metric may not tell the whole story
- Opposing Metrics

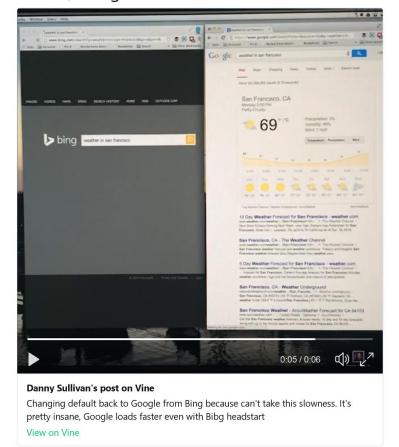




How and where you measure matters

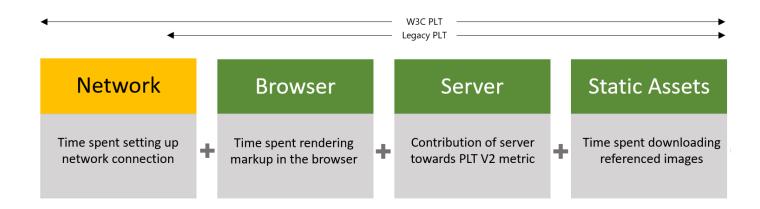
$$A = \frac{T - F}{T} \%$$

- Traffic black-holing Drop at CDN/Edge
- High availability at service level, but drop in incoming volume
- Anomaly detection can identify changes in volume
- Outside-in monitoring should supplement internal metrics
- Incorrect sample sizes can also affect your metric



Gaps in measurement

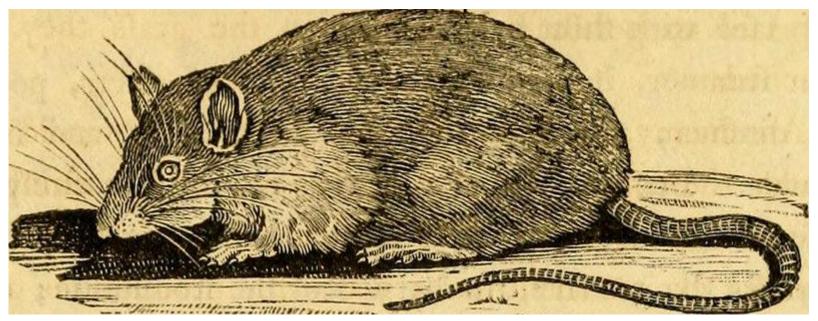
Changing default back to Google from Bing because can't take this slowness. It's pretty insane, Google load...



- Terrible slowness for a small segment of users
- PLT tracked at 75th or 95th didn't show issues
- Investigation and findings led to additional dimensions

Performance measurement journey

- Periodic update of metrics
- Above fold vs below fold



The great Hanoi rat massacre

https://flic.kr/p/ovusTD

More: http://freakonomics.com/media/vannrathunt.pdf https://www.atlasobscura.com/articles/hanoi-rat-massacre-1902

Unintended consequences - Window tax

https://en.wikipedia.org/wiki/Window_tax#/media/File:Window_Tax.jpg

https://en.wikipedia.org/wiki/Window_tax#/media/File:Windows_in_Brighton_Street,_Edinburgh.jpg

Closing thoughts

- High data quality
 - Correctness, completeness and cleanliness
- Periodic metrics update
 - Metrics do get "gamed"
- Wrong incentives unintended consequences
- Metrics overload
- Percentiles can hide problems
- Some metrics do flat-line. Important to let them not regress

Questions?

- kumars@microsoft.com
- @00kumars