
Reliable by Design
Adding value in the design review process

A recipe by Laura Nolan (Slack Technologies)
Preparation time: 40 minutes
Served at SREcon APAC 2019

Twitter: @lauralifts

There are a lot of
regretted
decisions about
software systems.

Image by eraphernalia_vintage@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/eraphernalia_vintage/3764815850/in/photolist-6JFEA7-YVHsNG-aNH4V2-AcWgQR-9Zwic2-aNHqB4-3TbbhH-bEjPZY-bTeyLZ-aa2pWt-dvQAtp-arJhJJ-eerNjW-5qNCrr-cowSVy-dvWzHQ-aRvwpT-dvQA82-a9r2Hv-Pakutc-9ZTuBJ-fE6Jun-fuwSj9-4QaDYv-da9BUf-gzztpP-9ZwhY6-fEojHf-YCzFLW-arJcRd-je8qev-T4tu4i-7UzSBu-9LUxVx-9rNbz1-28vevQL-at5Krb-pDKFJs-bPPqZe-21SDTPo-pfpuMq-pFFJA5-a61uTk-HbrGSc-9MvJ7r-5FS4k2-7XYet2-6vNCAM-fFN6ek-9sEamN

Why write design
documents or RFCs?

To promote
shared
understanding.

To spot problems early.

To give partner teams
a voice.

Written designs are more powerful.

What kinds of changes need a written design?

Structure of a design
document
● Why make this change?
● Alternatives considered
● Description of the change, including

scalability and performance, risks etc
● Impacts to other systems/teams
● Security and privacy implications

Design review is central
to SRE.

Design reviews can be time
consuming and stressful.

It’s not about
showing how
clever you are.

It’s not about matters of taste.

It’s about big, meaty concerns.

Two kinds of mistake
● Ignorance - there’s something we don’t know

● Ineptitude - we don’t make proper use of what we know

I’m pretty sure this isn’t just ITIL for SREs.

Excellent process can set us free to be our best.

An SRE design checklist (v0.1)
❏ Who, what, and why?

❏ Alternatives considered

❏ Stickiness

❏ Data

❏ Complexity

❏ Scale and performance

❏ Operability

❏ Robustness

Who, what and why
❏ Do you understand the design?
❏ Do you understand the goal of the

change?
❏ Why have you been asked to review?
❏ Have all affected teams been asked to

review?
❏ Is specific privacy or security review

needed?
❏ Who may be harmed by this system?

Alternatives considered
❏ Is there an open-source tool, or

a similar proprietary system at
this organisation that might
work?

❏ If so, did the author of the
design talk to owners of similar
systems about this use-case?

Stickiness
❏ What is going to be hard to

change later?
❏ What assumptions are baked

into the architecture or the
data model that might change
in the future?

Data
❏ What is the flow of data

through the system?

❏ What are the data consistency
requirements and how does
the design support them?

❏ What data can be recomputed
from other sources and which
cannot?

Image by kevinkrejci@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/kevinkrejci/15502739490/in/photolist-pBVAkU-nJj4Dz-4A55iC-KBY6e-8aB67W-bpcUw6-7CKZSP-9kzXJ7-9mExAQ-6jirBQ-jR9gc-7wLnfg-75ThVK-7CPPjq-d3ksN1-6jegpz-qannsh-6CANAe-6L2Mza-8i8wjr-9mBwGi-bQ3NU6-5eCw2t-9DpZLj-7XeR8o-3K1wcc-papb9A-p7HNzN-EvWYW-pDS3FT-XkCiyG-2aE5uEL-mfbrY-ACNW3K-WENvjU-WFNRDp-D7g7WX-XRj3ru-pWefCt-eMBKZt-5W3YX8-2e9mHeS-63mZcv-9ghxAZ-pnUEwk-T76xxo-v8Xs44-26o15nb-XJjNdK-Xjs1gw

Data
❏ Is there a data loss Service

Level Objective (SLO)?

❏ How long does data need to be
retained, and why?

❏ Does it need to be encrypted at
rest, in transit?

❏ Are there multiple replicas of
the data?

Image by kevinkrejci@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/kevinkrejci/15502739490/in/photolist-pBVAkU-nJj4Dz-4A55iC-KBY6e-8aB67W-bpcUw6-7CKZSP-9kzXJ7-9mExAQ-6jirBQ-jR9gc-7wLnfg-75ThVK-7CPPjq-d3ksN1-6jegpz-qannsh-6CANAe-6L2Mza-8i8wjr-9mBwGi-bQ3NU6-5eCw2t-9DpZLj-7XeR8o-3K1wcc-papb9A-p7HNzN-EvWYW-pDS3FT-XkCiyG-2aE5uEL-mfbrY-ACNW3K-WENvjU-WFNRDp-D7g7WX-XRj3ru-pWefCt-eMBKZt-5W3YX8-2e9mHeS-63mZcv-9ghxAZ-pnUEwk-T76xxo-v8Xs44-26o15nb-XJjNdK-Xjs1gw

Data
❏ How do we detect and deal

with loss or corruption of data?

❏ How is data sharded, and how
do we deal with growth and
resharding?

❏ How should data be backed up
and restored?

Image by kevinkrejci@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/kevinkrejci/15502739490/in/photolist-pBVAkU-nJj4Dz-4A55iC-KBY6e-8aB67W-bpcUw6-7CKZSP-9kzXJ7-9mExAQ-6jirBQ-jR9gc-7wLnfg-75ThVK-7CPPjq-d3ksN1-6jegpz-qannsh-6CANAe-6L2Mza-8i8wjr-9mBwGi-bQ3NU6-5eCw2t-9DpZLj-7XeR8o-3K1wcc-papb9A-p7HNzN-EvWYW-pDS3FT-XkCiyG-2aE5uEL-mfbrY-ACNW3K-WENvjU-WFNRDp-D7g7WX-XRj3ru-pWefCt-eMBKZt-5W3YX8-2e9mHeS-63mZcv-9ghxAZ-pnUEwk-T76xxo-v8Xs44-26o15nb-XJjNdK-Xjs1gw

Data
❏ What are the access control

and authentication strategies?

❏ Have relevant regulations such
as GDPR and any data
residency requirements been
addressed?

Image by kevinkrejci@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/kevinkrejci/15502739490/in/photolist-pBVAkU-nJj4Dz-4A55iC-KBY6e-8aB67W-bpcUw6-7CKZSP-9kzXJ7-9mExAQ-6jirBQ-jR9gc-7wLnfg-75ThVK-7CPPjq-d3ksN1-6jegpz-qannsh-6CANAe-6L2Mza-8i8wjr-9mBwGi-bQ3NU6-5eCw2t-9DpZLj-7XeR8o-3K1wcc-papb9A-p7HNzN-EvWYW-pDS3FT-XkCiyG-2aE5uEL-mfbrY-ACNW3K-WENvjU-WFNRDp-D7g7WX-XRj3ru-pWefCt-eMBKZt-5W3YX8-2e9mHeS-63mZcv-9ghxAZ-pnUEwk-T76xxo-v8Xs44-26o15nb-XJjNdK-Xjs1gw

Complexity
❏ Does each component of the

system have a clearly defined
role and a crisp interface?

❏ Can the number of moving
parts be reduced?

❏ Is the design similar to existing
systems at this organisation?

❏ Does the proposal introduce
new dependencies?

Image by thecjm@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/thecjm/64776867/in/photolist-6HZUx-8WkuwS-eaNswx-8WkusN-54j22z-6HZWP-7bw8S-49KNwb-7bwa5-6HZV5-49G4sm-49BYk2-49zPPF-49G4td-8yn1VX-7bwaZ-49zPzZ-7LqXG-5N1tUV-49zFEv-8WhqEP-Tw68cL-Zpd8a8-7LqVJ-7LqX7-49G4yU-7nQkhV-7bwcA-wNn8p-7bw8t-49G4AS-49G4vy-49DNBb-7LqUZ-7LqUg-49DSib-49DKku-5N4ACL-tbGyu-49FKpk-21GTaTy-49zDwZ-tbGwU-wNkpw-49zN7B-5Mvojj-8WjKAv-5MvpeW-5Mvq5o-7rTiR2

Scale and performance

❏ What are the bottlenecks in this
system that will limit its scale and
throughput?

❏ What’s the critical path of each type
of request, and how do requests
fan-out into multiple sub-requests?

Image by aresauburnphotos@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/aresauburnphotos/1667108328/in/photolist-3xjne3-iR5qrS-3xgzLK-avub3M-72X6jt-5uVFVF-AaYPbm-2zsmwL-gEK4WD-8PccCP-7FDWjc-2znZMt-2k95ok-2k95wV-3GbX68-8LRZzf-2so2TE-aw8kKZ-drg2y3-2so5KL-9FZnxv-2siEV8-4TGgsM-2zo25k-6YP2QA-8HEVjs-5pPGPD-8Jz9fb-5seYGc-4TLsqW-4TLtJJ-5z5MB3-6M2Q2a-4TGbPg-4TGcXX-4TLr8d-4TLp93-aAsnDU-5zZpg2-djWLyQ-pJMSBa-2snYMA-2siBn8-mxKFSX-2siCM8-6robm-ZbSb7d-A619Rm-3xkbyf-aprdRi

Scale and performance

❏ What is the expected peak load and
how does the system support it?

❏ What is the required latency SLO and
how does the system support it?

❏ How will we capacity plan and
loadtest?

Image by aresauburnphotos@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/aresauburnphotos/1667108328/in/photolist-3xjne3-iR5qrS-3xgzLK-avub3M-72X6jt-5uVFVF-AaYPbm-2zsmwL-gEK4WD-8PccCP-7FDWjc-2znZMt-2k95ok-2k95wV-3GbX68-8LRZzf-2so2TE-aw8kKZ-drg2y3-2so5KL-9FZnxv-2siEV8-4TGgsM-2zo25k-6YP2QA-8HEVjs-5pPGPD-8Jz9fb-5seYGc-4TLsqW-4TLtJJ-5z5MB3-6M2Q2a-4TGbPg-4TGcXX-4TLr8d-4TLp93-aAsnDU-5zZpg2-djWLyQ-pJMSBa-2snYMA-2siBn8-mxKFSX-2siCM8-6robm-ZbSb7d-A619Rm-3xkbyf-aprdRi

Scale and performance

❏ What systems are we depending on,
what are their performance limits
and their documented SLOs?

❏ What will it cost to run financially?

Image by aresauburnphotos@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/aresauburnphotos/1667108328/in/photolist-3xjne3-iR5qrS-3xgzLK-avub3M-72X6jt-5uVFVF-AaYPbm-2zsmwL-gEK4WD-8PccCP-7FDWjc-2znZMt-2k95ok-2k95wV-3GbX68-8LRZzf-2so2TE-aw8kKZ-drg2y3-2so5KL-9FZnxv-2siEV8-4TGgsM-2zo25k-6YP2QA-8HEVjs-5pPGPD-8Jz9fb-5seYGc-4TLsqW-4TLtJJ-5z5MB3-6M2Q2a-4TGbPg-4TGcXX-4TLr8d-4TLp93-aAsnDU-5zZpg2-djWLyQ-pJMSBa-2snYMA-2siBn8-mxKFSX-2siCM8-6robm-ZbSb7d-A619Rm-3xkbyf-aprdRi

Operability
❏ How does the design support

monitoring and observability?
❏ Do all third-party system

components provide
appropriate observability
features?

Image by davidspinks@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/davidspinks/8226465426

Operability
❏ What tools will be available to

operators to understand and
control the system’s behavior
during production incidents?

❏ How will these tools make
clear to the operator what
specific actions they will take,
to avoid surprises?

Image by davidspinks@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/davidspinks/8226465426

Operability
❏ What routine work is going to

be needed for this system?

❏ Which team is expected to be
responsible for it?

❏ How much of it can and
should be automated, and will
that automation reduce the
operating team’s
understanding of the system?

Image by davidspinks@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/davidspinks/8226465426

Operability
❏ How do we detect abusive

users or requests and what
action can we take in
response?

❏ how responsive will vendors
be to your feature requests or
problems?

❏ Are all configurations stored
in source control?

Image by davidspinks@Flickr, CC BY-SA 2.0

https://www.flickr.com/photos/davidspinks/8226465426

Robustness
❏ How is the system designed to

deal with failure in the various
physical failure domains
(device, rack, cluster/AZ,
datacenter)?

❏ How will it deal with a network
partition, or increased latency
anywhere in the system?

Robustness
❏ Are there manual operations

that will be required to recover
from common kinds of failure?

❏ How could an operator
accidentally (or deliberately)
break the system?

❏ Is there isolation between
users of the system?

Robustness
❏ What are the smallest divisible

units of work and data, will we
likely see hotspotting or large
shards?

❏ What are the hard
dependencies of this system,
and can we degrade gracefully?

Robustness
❏ How can we restart this system

from scratch and how long will
that take?

❏ Do we depend on anything
that might depend on this
system?

❏ Don’t forget DNS and monitoring.

Robustness
❏ How will this system deal with

a large spike of load?

❏ Does the system use caching,
and if so, will it be able to serve
at increased latency without
the cache?

Robustness
❏ Is the control plane fully

separate from the data plane?

❏ Can I canary this design
effectively?

❏ Can this system hurt its
backends by making excessive
requests?

Robustness
❏ Can this system autonomously

drain capacity?

❏ Can this system autonomously
initiate resource-intensive
processes like large dataflows?

❏ Can this system create
self-reinforcing phenomena
(i.e. vicious cycles)?

Checklist recap
● Who, what, and why

● Alternatives considered

● Stickiness

● Data

● Complexity

● Scale and performance

● Operability

● Robustness

Customize it
● This list should be adapted

for local needs.

● Skip items that don’t make
sense for a given project.

The goal of a good design is to understand tradeoffs
and risks and to make deliberate choices.

Errors of ignorance are inevitable. But errors of
ineptitude are avoidable.

Maturing as a profession means being systematic
about reducing errors of ineptitude.

Find the checklist online

http://bit.ly/sredesign

http://bit.ly/sredesign

We’re hiring!

Slack is used by millions of people every day.
We need engineers who want to make that experience

as reliable and enjoyable as possible.

https://slack.com/careers

Credits
Images are courtesy of pixabay.com, unless otherwise attributed on the slides
where they appear.

“The Checklist Manifesto” by Atul Gawande.

Thank you to Tanya Reilly (@whereistanya) for reviewing the checklist.

http://pixabay.com
http://atulgawande.com/book/the-checklist-manifesto/
https://twitter.com/whereistanya

