
Latency SLOs Done Right
by @postwait, Founder & CTO @Circonus

Service Level Objectives
SREcon 2018 SLO workshop (Google)

Latency SLI

The proportion of valid requests served faster than a threshold

Which requests are valid?
What is the threshold?

@postwait

Service Level Objectives
SREcon 2018 SLO workshop (Google)

Latency SLO

99% of home page requests in the past 28 days served in < 100ms

@postwait

Service Level Objectives
SREcon 2018 SLO workshop (Google)

What is the p90 computed over the full 28 days?

@postwait

Service Level Objectives
SREcon 2018 SLO workshop (Google)

Hint - it’s not the average of each p90 sample shown

@postwait

A more dramatic example
Calculated p90 (10-100ms) != averaged p90 (36ms)

Rethinking computing SLO latency

1) Compute the SLO from stored raw data (logs)

2) Count the number of bad requests

3) Use histograms to store latency distribution

@postwait

1) Compute the SLO from stored data

Possible with many tools (Splunk, ELK, awk/grep)

Not always tenable for large volumes of data

Tough to do in real time

@postwait

1) Compute the SLO from stored data

An example of calculating percentiles w/ Splunk

mydata | stats perc90(responsetime) as response90,

perc99(responsetime) as response99 by

ApplicationName

@postwait

2) Count the number of bad
requests

2) Count the number of bad
requests

Percent good = 100 - (2262/60124)*100 = 96.238%

Problem - you have to choose latency threshold up front

If your SLO changes, you can’t analyze historical data

@postwait

3) Using histogram latency data

Histograms can be aggregated across time

Histograms can be used to derive arbitrary percentiles

Bin (bucket) choices should span sample data

@postwait

3) Using histogram latency data

HDR-Histogram – https://HDrhistogram.org

Circllhist – https://github.com/circonus-

labs/libcircllhist/

t-digest – https://github.com/tdunning/t-digest

@postwait

3) Using histogram latency data

3) Using histogram latency data

3) Using histogram latency data

99% of home page requests in the past 28 days served in < 100ms

% requests = count_below(100ms) / total_count * 100

ex: 99.484 percent faster than 100ms

This is an inverse percentile.

@postwait

3) Using histogram latency data

3) Using histogram latency data

libcircllhist: C, Java, Go, Javascript

4.7% maximal error

0.5% maximal error

Envoy uses libcircllhist, for example.

Framing SLOs as quantiles is backwards

● When we say:

99.5%

of requests should be faster than

100ms

● We don’t care as much about how fast

the 99.5th% is… p(99.5) or q(0.995)

● We actually care what percentile is at

100ms… q-1(0.1)

Framing SLOs correctly is important
● If you are “doing SLOs”

(and budgets around them)

● You are literally investing time, money,

and focus based on the answers to

math questions.

● Ask the right questions.

● Do the math right.

● Histogram representation is the “right”

statistical representation for these

questions.

● t-digest and moment sketches are

beautiful and awesome and powerful,

but they help answer different

questions… and answer these questions

poorly.

Framing SLOs is iterative
● Since we’re literally investing around

these numbers…

Why is 99.5% at 100ms right?

And not 99.2% at 115ms?

● If you can’t answer this question…

maybe you shouldn’t take your

SLO so seriously.

● By keeping historical data with the right

granularity to answer these “new”

proposals for SLOs… you can iteratively

optimize your parameters.

SLOs… the undiscussed problem
● There are two times that are important.

1) the period over which you calculate

your quantile.

2) the period over which you calculate

your objective success.

● SLOs don’t look like:

99.5% under 100ms is an incomplete

phrasing.

● They actually look like:

99.5% under 100ms over any five

minute period… and

99.9% of those are satisfied in a rolling

28 day period.

(yes, that’s now 4 parameters to select correctly)

Tool Choices
● You need correct math

● You need history

● You need correlation

● Use a tool that either uses raw data or

binned histograms.

● You should be able to quantify statistical

error in every answer you get back.

● You SLOs (at first) will be offensively

arbitrary. In order to improve them you

must be able to re-analyze your data.

● You can’t refit parameters without the

data your attempting to fit to.

Questions?

Tweet me @postwait

Ask us anything on Slack at http://slack.s.circonus.com/

