. CIRCONUS

Latency SLOs Done Right

by @postwait, Founder & CTO @Circonus




J. CIRCONUS

Service Level Objectives
SREcon 2018 SLO workshop (Google)

Latency SLI

The proportion of valid requests served faster than a threshold

Which requests are valid?
What is the threshold?




v,/. CIRCONUS

Service Level Objectives
SREcon 2018 SLO workshop (Google)

Latency SLO

99% of home page requests in the past 28 days served in < 100ms




vf. CIRCONUS

Service Level Objectives
SREcon 2018 SLO workshop (Google)

What is the p90 computed over the full 28 days?

90th Perkentile
"..".-,'_‘,\hf‘v AA —JL ALA

7]
©
c
8
153
2
E

“'00th Percentile . |

50th Percentile

@postwait



vf. CIRCONUS

Service Level Objectives
SREcon 2018 SLO workshop (Google)

Hint - it's not the average of each p90 sample shown

Server Latency Distribution
99th Perkentile
LA ,-f‘, A _JL L,

“'00th Percentile . |

7]
©
c
8
153
2
E

50th Percentile

@postwait



vf. CIRCONUS

A more dramatic example
Calculated p90 (10-100ms) != averaged p90 (36ms)




M/. CIRCONUS

Rethinking computing SLO latency

1) Compute the SLO from stored raw data (logs)
2) Count the number of bad requests

3) Use histograms to store latency distribution




M/. CIRCONUS

1) Compute the SLO from stored data

Possible with many tools (Splunk, ELK, awk/grep)
Not always tenable for large volumes of data

Tough to do in real time

\/4.¢_f¢_':' -




M/. CIRCONUS

1) Compute the SLO from stored data

An example of calculating percentiles w/ Splunk
mydata | stats perc90(responsetime) as response90,
perc99(responsetime) as response99 by

ApplicationName



J. CIRCONUS

2) Count the number of bad

T count() // ALL REQUESTS (ms)

T count_above(30) // BAD REQUESTS (ms)




M/.CIFIC:DNUS
2) Count the number of bad
requests

Percent good =100 - (2262/60124)*100 = 96.238%
Problem - you have to choose latency threshold up front

If your SLO changes, you can't analyze historical data




M/. CIRCONUS

3) Using histogram latency data

Histograms can be aggregated across time
Histograms can be used to derive arbitrary percentiles

Bin (bucket) choices should span sample data




M/. CIRCONUS

3) Using histogram latency data

HDR-Histogram — https://HDrhistogram.org
Circllhist — https://github.com/circonus-

labs/libcircllhist/

t-digest — https://github.com/tdunning/t-digest




vf. CIRCONUS

3) Using histogram latency data

Median 500k

Average 600k

percentile 1M

95th
1.1M

99th
1.2M




J. CIRCONUS

3) Using histogram latency data




M/. CIRCONUS

3) Using histogram latency data

99% of home page requests in the past 28 days served in < 100ms

% requests = count_below(100ms) / total_count * 100
eXx: 99.484 percent faster than 100ms

This 1s an inverse percentile.




vf. CIRCONUS

3) Using histogram latency data




vf. CIRCONUS

3) Using histogram latency data

’—

| [ )
400k ' p ; | '
| 1 N
i.l,-.l—l -llilllll““ ““““l “ |||I| “'ll' 0L — ——
O'%.o .0p 10y 15p

5




vf. CIRCONUS

libcircllhist: C, Java, Go, Javascript

Envoy uses libcircllhist, for example.

0.5% maximal error

_ 4.7% maximal error

400k ] ) .
200k q I
‘i“pl“ 'l'I“II“lIll“ ““H“l “ |||I| II Tl o o
O'%.o 5.0p 10p




M/. CIRCONUS

Framing SLOs as quantiles 1s backwards

When we say:

99.5%

of requests should be faster than
100ms

We don't care as much about how fast
the 99.5t% is... p(99.5) or q(0.995)

We actually care what percentile is at
100ms... g1(0.1)



vf. CIRCONUS

Framing SLOs correctly 1s important

e Ifyou are “doing SLOs"” e Histogram representation is the “right”
(and budgets around them) statistical representation for these
guestions.
e You are literally investing time, money,
and focus based on the answers to e t-digest and moment sketches are
math questions. beautiful and awesome and powerful,
but they help answer different
e Ask the right questions. questions... and answer these questions
poorly.

e Do the math right.



vf. CIRCONUS

Framing SLOs 1s iterative

Since we're literally investing around °
these numbers...

Why is 99.5% at 100ms right?

And not 99.2% at 115ms? °

If you can't answer this question...

maybe you shouldn't take your
SLO so seriously.

By keeping historical data with the right
granularity to answer these “new”
proposals for SLOs... you can iteratively
optimize your parameters.



uf. CIRCONUS

SLOs... the undiscussed problem

e There are two times that are important. e SLOsdon'tlook like:
99.5% under 100ms is an incomplete
1) the period over which you calculate phrasing.

your quantile.
e They actually look like:

2) the period over which you calculate 99.5% under 100ms over any five

your objective success. minute period... and
99.9% of those are satisfied in a rolling
28 day period.

(yes, that's now 4 parameters to select correctly)



M/. CIRCONUS

Tool Choices

You need correct math

You need history

You need correlation

Use a tool that either uses raw data or
binned histograms.

You should be able to quantify statistical
error in every answer you get back.

You SLOs (at first) will be offensively
arbitrary. In order to improve them you
must be able to re-analyze your data.

You can't refit parameters without the
data your attempting to fit to.



\4,/. CIRCONUS

Questions?

Tweet me @postwait

Ask us anything on Slack at http://slack.s.circonus.com/




